$\newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, nº 1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\dsc}[1]{\displaystyle{\color{red}{#1}}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\Li}[1]{\,{\rm Li}_{#1}}
\newcommand{\norm}[1]{\left\vert\left\vert\, nº 1\,\right\vert\right\vert}
\newcommand{\pars}[1]{\left (\, nº 1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\vphantom{\large Un}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}$
\begin{align}&\color{#66f}{\large
\sum_{n\ =\ 1}^{\infty}\arctan\pars{3n^{2} \over 2n^{4} - 1}}
=\sum_{n\ =\ 1}^{\infty}\bracks{
\arctan\pars{1 \over n^{2}} + \arctan\pars{1 \over 2n^{2}}}
\\[5mm]&=\sum_{k\ =\ 1}^{2}
\dsc{\sum_{n\ =\ 1}^{\infty}\arctan\pars{1 \over kn^{2}}}\tag{1}
\end{align}
\begin{align}&\dsc{\sum_{n\ =\ 1}^{\infty}\arctan\pars{1 \over kn^{2}}}
=\sum_{n\ =\ 1}^{\infty}\int_{0}^{1}{kn^{2} \over x^{2} + k^{2}n^{4}}\,\dd x
={1 \over k}\Re\int_{0}^{1}\sum_{n\ =\ 1}^{\infty}{1 \over n^{2} + x\ic/k}\,\dd x
\\[5mm]&={1 \over k}\,\Re\int_{0}^{1}\sum_{n\ =\ 0}^{\infty}
{1 \over \pars{n + 1 + \root{x\ic/k}}\pars{n + 1 - \root{x\ic/k}}}\,\dd x
\\[5mm]&={1 \over k}\,\Re\int_{0}^{1}
{\Psi\pars{1 + \root{x\ic/k}} - \Psi\pars{1 - \root{x\ic/k}} \over 2\root{x\ic/k}}\,\dd x
\end{align}
donde $\ds{\Psi}$ es la Función Digamma.
Con el cambio de $\ds{\root{{x \over k}\,\ic}=t\ \imp\ x=-kt^{2}\,\ic}$:
\begin{align}&\dsc{\sum_{n\ =\ 1}^{\infty}\arctan\pars{1 \over kn^{2}}}
={1 \over k}\,\Re\int_{0}^{\root{\ic/k}}
{\Psi\pars{1 + t} - \Psi\pars{1 - t} \over 2t}\,\pars{-2kt\,\ic\,\dd t}
\\[5mm]&=\Im\int_{0}^{\root{\ic/k}}
\bracks{\Psi\pars{1 + t} - \Psi\pars{1 - t}}\,\dd t
=\Im\int_{0}^{\root{\ic/k}}
\braces{{1 \over t} - \bracks{\Psi\pars{1 - t} - \Psi\pars{t}}}\,\dd t
\\[5mm]&=\Im\int_{0}^{\root{\ic/k}}
\bracks{{1 \over t} - \pi\cot\pars{\pi t}}\,\dd t
=\Im\bracks{
\ln\pars{\root{\ic \over k}} - \ln\pars{\sin\pars{\pi\root{\ic \over k}}}}
\end{align}
Sin embargo
\begin{align}
&\color{#00f}{\Im\ln\pars{\root{\ic \over k}}}=\Im\ln\pars{1 + \ic \over \root{2k}}
=\color{#00f}{{\pi \over 4}}
\\[1cm]
&\color{#00f}{\Im\ln\pars{\sin\pars{\pi\root{\ic \over k}}}}
=\Im\ln\pars{\sin\pars{{\pi \over \root{2k}} + {\pi \over \root{2k}}\ic}}
\\[5mm]&=\Im\ln\pars{\sin\pars{\pi \over \root{2k}}\cosh\pars{\pi \over \root{2k}}
+\cos\pars{\pi \over \root{2k}}\sinh\pars{\pi \over \root{2k}}\ic}
\\[5mm]&=\color{#00f}{
\arctan\pars{\cot\pars{\pi \over \root{2k}}\tanh\pars{\pi \over \root{2k}}}}
\end{align}
tal que
$$
\dsc{\sum_{n\ =\ 1}^{\infty}\arctan\pars{1 \over kn^{2}}}\
{\large =}\ \dsc{{\pi \más de 4}
-\arctan\pars{\cuna\pars{\pi \\raíz{2k}}\tanh\pars{\pi \\raíz{2k}}}}
$$
Con la expresión $\pars{1}$:
\begin{align}&\color{#66f}{\large
\sum_{n\ =\ 1}^{\infty}\arctan\pars{3n^{2} \over 2n^{4} - 1}}
=\color{#66f}{\large{\pi \over 2}
-\arctan\pars{\cot\pars{\pi \over \root{2}}\tanh\pars{\pi \over \root{2}}}}
\\[5mm]&\approx{\tt 2.21013994}
\end{align}