$ \newcommand {\+}{^{ \dagger }} \newcommand { \angles }[1]{ \left\langle\ , #1 \, \right\rangle } \newcommand { \braces }[1]{ \left\lbrace\ , #1 \, \right\rbrace } \newcommand { \bracks }[1]{ \left\lbrack\ , #1 \, \right\rbrack } \newcommand { \ceil }[1]{\, \left\lceil\ , #1 \, \right\rceil\ ,} \newcommand { \dd }{{ \rm d}} \newcommand { \down }{ \downarrow } \newcommand { \ds }[1]{ \displaystyle {#1}} \newcommand { \expo }[1]{\,{ \rm e}^{#1}\,} \newcommand { \fermi }{\,{ \rm f}} \newcommand { \floor }[1]{\, \left\lfloor #1 \right\rfloor\ ,} \newcommand { \half }{{1 \over 2}} \newcommand { \ic }{{ \rm i}} \newcommand { \iff }{ \Longleftrightarrow } \newcommand { \imp }{ \Longrightarrow } \newcommand { \isdiv }{\, \left.\right\vert\ ,} \newcommand { \ket }[1]{ \left\vert #1 \right\rangle } \newcommand { \ol }[1]{ \overline {#1}} \newcommand { \pars }[1]{ \left (\, #1 \, \right )} \newcommand { \partiald }[3][]{ \frac { \partial ^{#1} #2}{ \partial #3^{#1}}} \newcommand { \pp }{{ \cal P}} \newcommand { \root }[2][]{\, \sqrt [#1]{ \vphantom { \large A}\,#2\,}\,} \newcommand { \sech }{\,{ \rm sech}} \newcommand { \sgn }{\,{ \rm sgn}} \newcommand { \totald }[3][]{ \frac {{ \rm d}^{#1} #2}{{ \rm d} #3^{#1}}} \newcommand { \ul }[1]{ \underline {#1}} \newcommand { \verts }[1]{ \left\vert\ , #1 \, \right\vert } \newcommand { \wt }[1]{ \widetilde {#1}}$ $$ \Psi\pars {s + 1} + \gamma = \int_ {0}^{1}{1 - t^{s} \over 1 - t} \quad\imp\quad \Psi ' \pars {1 \over n} = - \int_ {0}^{1}{t^{1/n - 1} \ln\pars {t} \over 1 - t}\, \dd t $$
Con $ \ds {t = x^{n}}$ : $$ \Psi ' \pars {1 \over n}= - \int_ {0}^{1}{ \pars {x^{n}}^{1/n - 1} \ln\pars {x^{n}} \over 1 - x^{n}}\,nx^{n - 1} \, \dd x=n^{2} \int_ {0}^{1}{ \ln\pars {x} \over x^{n}- 1}\, \dd x $$
$$ \color {#00f}{ \large % \int_ {0}^{1}{ \ln\pars {x} \over x^{n}- 1}\, \dd x = {1 \over n^{2}}\, \Psi ' \pars {1 \over n}} $$ Tengan en cuenta que $ \ds { \Psi ' \pars {1} = { \pi ^{2} \over 6}}$ y $ \ds { \Psi ' \pars { \half } = { \pi ^{2} \over 2}}$ .
Algunos detalles se dan en mi respuesta anterior .