26 votos

Integral de la ${\large\int}_0^1\ln^3\!\left(1+x+x^2\right)dx$

Estoy interesado en esta integral: $$I=\int_0^1\ln^3\!\left(1+x+x^2\right)dx.\tag1$$ Podemos demostrar que $$\begin{align}I&\stackrel{\color{gray}?}=\frac32\ln^33-9\ln^23+36\ln3+2\pi^2\ln3-\frac{4\pi^2}3+\left(8-\ln^23-4\ln3\right)\cdot\frac{\pi\sqrt3}2\\&-48-\frac{7\pi^3}{6\sqrt3}+(2-3\ln3)\cdot\psi^{(1)}\!\left(\tfrac13\right)+36\,{_4F_3}\!\left(\begin{array}c\tfrac12,\tfrac12,\tfrac12,\tfrac12\\\tfrac32,\tfrac32,\tfrac32\end{array}\middle|\,\tfrac34\right)\end{align}\tag2$$ de encontrar una simplificación de la forma cerrada?

También, podemos demostrar que $${_4F_3}\!\left(\begin{array}c\tfrac12,\tfrac12,\tfrac12,\tfrac12\\\tfrac32,\tfrac32,\tfrac32\end{array}\middle|\,\tfrac34\right)\stackrel{\color{gray}?}=\frac{71\pi^3}{1296\sqrt3}+\frac{5\pi}{48\sqrt3}\ln^23-\frac1{\sqrt3}\,\Im\operatorname{Li}_3\!\left[\frac{(-1)^{\small1/6}}{\sqrt3}\right]\tag3$$ o encontrar una expresión más sencilla?

18voto

Godsaur Puntos 121

Una Relación De Recurrencia

Voy a utilizar la notación $$\mathcal{A}_n=\int^1_0\ln^n(1+x+x^2)\ {\rm d}x\ \ \ , \ \ \ \mathcal{B}_n=\int^\frac{\pi}{3}_\frac{\pi}{6}\ln^n\left(\frac{3}{4\cos^2{x}}\right)\ {\rm d}x$$ La integración por partes y la aplicación de la sustitución de $\displaystyle x+\frac{1}{2}\mapsto \frac{\sqrt{3}}{2}\tan{x}$, es evidente que $$\mathcal{A}_n=n\sqrt{3}\mathcal{B}_{n-1}-2n\mathcal{A}_{n-1}+\frac{3}{2}(\ln{3})^n$$ Podemos utilizar esta recurrencia para calcular $\mathcal{A}_n$ para las pequeñas entero positivo los valores de $n$.


Evaluación de $\mathcal{A}_1$

De inmediato nos han $$\mathcal{A}_1=1\times\sqrt{3}\times\frac{\pi}{6}-2\times 1\times 1+\frac{3}{2}\ln{3}=\frac{\pi}{2\sqrt{3}}+\frac{3}{2}\ln{3}-2$$


Evaluación de $\mathcal{A}_2$

En primer lugar, calcular $\mathcal{B}_1$ mediante la explotación de una serie de Fourier. \begin{align} \mathcal{B}_1 &=\frac{\pi}{6}\ln{3}-2\int^\frac{\pi}{3}_\frac{\pi}{6}\ln(2\cos{x})\ {\rm d}x\\ &=\frac{\pi}{6}\ln{3}+2\sum^\infty_{n=1}\frac{(-1)^n}{n}\int^\frac{\pi}{3}_\frac{\pi}{6}\cos(2nx)\ {\rm d}x\\ &=\frac{\pi}{6}\ln{3}+\sum^\infty_{n=1}\frac{(-1)^n}{n^2}\left(\sin\left(\frac{2n\pi}{3}\right)-\sin\left(\frac{n\pi}{3}\right)\right)\\ &=\frac{\pi}{6}\ln{3}-\frac{1}{12\sqrt{3}}\sum^\infty_{n=0}\left[\frac{1}{\left(n+\frac{1}{3}\right)^2}-\frac{1}{\left(n+\frac{2}{3}\right)^2}\right]\\ &=-\frac{1}{6\sqrt{3}}\psi_1\left(\frac{1}{3}\right)+\frac{\pi^2}{9\sqrt{3}}+\frac{\pi}{6}\ln{3} \end{align} Por lo tanto, \begin{align} \mathcal{A}_2 &=2\sqrt{3}\left(-\frac{1}{6\sqrt{3}}\psi_1\left(\frac{1}{3}\right)+\frac{\pi^2}{9\sqrt{3}}+\frac{\pi}{6}\ln{3}\right)-4\left(\frac{\pi}{2\sqrt{3}}+\frac{3}{2}\ln{3}-2\right)+\frac{3}{2}\ln^2{3}\\ &=-\frac{1}{3}\psi_1\left(\frac{1}{3}\right)+\frac{2\pi^2}{9}+\frac{\pi}{\sqrt{3}}\ln{3}+\frac{3}{2}\ln^2{3}-\frac{2\pi}{\sqrt{3}}-6\ln{3}+8 \end{align}


La simplificación de Algunos ${\rm Li}_2,\ {\rm Li}_3$ Términos

Voy a simplificar los términos $$\color{red}{{\rm Li}_2(e^{-\pi i/3})},\ \color{blue}{{\rm Li}_2(1-e^{2\pi i/3})},\ \color{green}{\Im{\rm Li}_3(e^{\pi i/3})},\ \color{purple}{\Im{\rm Li}_3(e^{-\pi i/3})},\ \color{brown}{\Im{\rm Li}_3(e^{2\pi i/3})}$$ Las identidades (por $0<\theta<2\pi$), \begin{align} \sum^\infty_{n=1}\frac{\cos(n\theta)}{n^2}&=\frac{\theta^2}{4}-\frac{\pi\theta}{2}+\frac{\pi^2}{6}\\ \sum^\infty_{n=1}\frac{\sin(n\theta)}{n^3}&=\frac{\theta^3}{12}-\frac{\pi\theta^2}{4}+\frac{\pi^2\theta}{6}\\ \end{align} (que pueden ser derivados por considerar $\Im\ln(1-e^{i\theta})$ y la integración), nos dan \begin{align} \Im{\rm Li}_3(e^{\pm\pi i/3}) =&\pm\frac{5\pi^3}{162}\\ \Im{\rm Li}_3(e^{2\pi i/3}) &=\frac{2\pi^3}{81}\\ {\rm Li}_2(e^{-\pi i/3}) &=\frac{\pi^2}{36}-i\sum^\infty_{n=1}\frac{\sin(n\pi/3)}{n^2}\\ &=\frac{\pi^2}{36}-\frac{i\sqrt{3}}{2}\sum^\infty_{n=0}\left[\frac{1}{(6n+1)^2}+\frac{1}{(6n+2)^2}-\frac{1}{(6n+4)^2}-\frac{1}{(6n+5)^2}\right]\\ &=\frac{\pi^2}{36}-\frac{i}{24\sqrt{3}}\left(\psi_1\left(\frac{1}{6}\right)+\psi_1\left(\frac{1}{3}\right)-\psi_1\left(\frac{2}{3}\right)-\psi_1\left(\frac{5}{6}\right)\right)\\ &=\frac{\pi^2}{36}-i\left(\frac{1}{2\sqrt{3}}\psi_1\left(\frac{1}{3}\right)-\frac{\pi^2}{3\sqrt{3}}\right) \end{align} Además, el dilogarithm reflexión fórmula estados $${\rm Li}_2(z)+{\rm Li}_2(1-z)=\frac{\pi^2}{6}-\ln{z}\ln(1-z)$$ Por lo tanto \begin{align} {\rm Li}_2(1-e^{2\pi i/3}) &=\frac{\pi^2}{6}-\frac{2\pi i}{3}\left(\frac{\ln{3}}{2}-\frac{\pi i}{6}\right)-\left(-\frac{\pi^2}{18}+i\sum^\infty_{n=1}\frac{\sin(2n\pi/3)}{n^2}\right)\\ &=\frac{\pi^2}{6}-\frac{2\pi i}{3}\left(\frac{\ln{3}}{2}-\frac{\pi i}{6}\right)-\left(-\frac{\pi^2}{18}+\frac{i\sqrt{3}}{2}\sum^\infty_{n=0}\left[\frac{1}{(3n+1)^2}-\frac{1}{(3n+2)^2}\right]\right)\\ &=\frac{\pi^2}{9}-i\left(\frac{1}{3\sqrt{3}}\psi_1\left(\frac{1}{3}\right)-\frac{2\pi^2}{9\sqrt{3}}+\frac{\pi}{3}\ln{3}\right) \end{align}


Evaluación de $\mathcal{A}_3$

Del mismo modo, comenzamos con la evaluación de las $\mathcal{B}_2$. \begin{align} \mathcal{B}_2 &=\int^\frac{\pi}{3}_\frac{\pi}{6}\ln^2{3}-4\ln{3}\ln(2\cos{x})+4x^2+4\operatorname{Re}\ln^2(1+e^{2ix})\ {\rm d}x\\ &=-\frac{\ln{3}}{3\sqrt{3}}\psi_1\left(\frac{1}{3}\right)+\frac{7\pi^3}{162}+\frac{2\pi^2}{9\sqrt{3}}\ln{3}+\frac{\pi}{6}\ln^2{3}+8\Re\sum^\infty_{n=1}\frac{(-1)^{n}H_{n-1}}{n}\int^\frac{\pi}{3}_\frac{\pi}{6}e^{2inx}\ {\rm d}x\\ &=-\frac{\ln{3}}{3\sqrt{3}}\psi_1\left(\frac{1}{3}\right)+\frac{7\pi^3}{162}+\frac{2\pi^2}{9\sqrt{3}}\ln{3}+\frac{\pi}{6}\ln^2{3}-4\sum^\infty_{n=1}\frac{1}{n^3}\left(\sin\left(\frac{2\pi n}{3}\right)-\sin\left(\frac{\pi n}{3}\right)\right)\\ &\ \ \ \ \ +4\Im\sum^\infty_{n=1}\frac{H_{n}}{n^2}\left(e^{2\pi in/3}-e^{\pi in/3}\right)\\ &=-\frac{\ln{3}}{3\sqrt{3}}\psi_1\left(\frac{1}{3}\right)+\frac{11\pi^3}{162}+\frac{2\pi^2}{9\sqrt{3}}\ln{3}+\frac{\pi}{6}\ln^2{3}\\ &\ \ \ \ \ +4\Im\left[{\rm Li}_3(z)-{\rm Li}_3(1-z)+{\rm Li}_2(1-z)\ln(1-z)+\frac{1}{2}\ln{z}\ln^2(1-z)+\zeta(3)\right]^{e^{2\pi i/3}}_{e^{\pi i/3}} \end{align} donde he utilizado la generación de la función de $\dfrac{H_n}{n^2}$. Utilizando los resultados obtenidos en la sección anterior, \begin{align} &\ \ \ \ \Im\left[{\rm Li}_3(z)-{\rm Li}_3(1-z)+{\rm Li}_2(1-z)\ln(1-z)+\frac{1}{2}\ln{z}\ln^2(1-z)+\zeta(3)\right]^{e^{2\pi i/3}}_{e^{\pi i/3}}\\ &=\color{brown}{\frac{2\pi^3}{81}}-\color{green}{\frac{5\pi^3}{162}}+\color{purple}{\left(-\frac{5\pi^3}{162}\right)}-\Im{\rm Li}_3(1-e^{2\pi i/3})\\ &\ \ \ \ +\Im\color{blue}{\left(\frac{\pi^2}{9}-i\left(\frac{1}{3\sqrt{3}}\psi_1\left(\frac{1}{3}\right)-\frac{2\pi^2}{9\sqrt{3}}+\frac{\pi}{3}\ln{3}\right)\right)}\left(\frac{\ln{3}}{2}-\frac{\pi i}{6}\right)\\ &\ \ \ \ -\Im\color{red}{\left(\frac{\pi^2}{36}-i\left(\frac{1}{2\sqrt{3}}\psi_1\left(\frac{1}{3}\right)-\frac{\pi^2}{3\sqrt{3}}\right)\right)}\left(-\frac{\pi i}{3}\right)+\frac{\pi^3}{108}+\frac{\pi}{12}\ln^2{3}\\ &=-\Im{\rm Li}_3(1-e^{2\pi i/3})-\frac{\ln{3}}{6\sqrt{3}}\psi_1\left(\frac{1}{3}\right)-\frac{\pi^3}{27}+\frac{\pi^2}{9\sqrt{3}}\ln{3}-\frac{\pi}{12}\ln^2{3} \end{align} Por lo tanto \begin{align} \mathcal{B}_2 &=-4\Im{\rm Li}_3(1-e^{2\pi i/3})-\frac{\ln{3}}{\sqrt{3}}\psi_1\left(\frac{1}{3}\right)-\frac{13\pi^3}{162}+\frac{2\pi^2}{3\sqrt{3}}\ln{3}-\frac{\pi}{6}\ln^2{3} \end{align} y por último, \begin{align} \mathcal{A}_3 &=3\sqrt{3}\left(-4\Im{\rm Li}_3(1-e^{2\pi i/3})-\frac{\ln{3}}{\sqrt{3}}\psi_1\left(\frac{1}{3}\right)-\frac{13\pi^3}{162}+\frac{2\pi^2}{3\sqrt{3}}\ln{3}-\frac{\pi}{6}\ln^2{3}\right)\\ &\ \ \ \ -6\left(-\frac{1}{3}\psi_1\left(\frac{1}{3}\right)+\frac{2\pi^2}{9}+\frac{\pi}{\sqrt{3}}\ln{3}+\frac{3}{2}\ln^2{3}-\frac{2\pi}{\sqrt{3}}-6\ln{3}+8\right)+\frac{3}{2}\ln^3{3}\\ &=\color{darkorange}{-12\sqrt{3}\Im{\rm Li}_3(1-e^{2\pi i/3})+(2-3\ln{3})\psi_1\left(\frac{1}{3}\right)+\frac{3}{2}\ln^3{3}-\left(\frac{\sqrt{3}\pi}{2}+9\right)\ln^2{3}}\\ &\ \ \ \ \color{darkorange}{+(2\pi^2-2\sqrt{3}\pi)\ln{3}-\left(\frac{13\sqrt{3}\pi^3}{54}+\frac{4\pi^2}{3}-4\sqrt{3}\pi-36\ln{3}+48\right)} \end{align}

10voto

Vladimir Reshetnikov Puntos 18017

He encontrado la antiderivada: $$\begin{align}\int\ln^3\!\left(1+x+x^2\right)dx&=\xi\,\sqrt3\,\Big[\alpha^3-6\alpha^2+24\alpha-48\Big]\\&-\beta\,\sqrt3\,\Big[4\beta^2-3\alpha\ln3+6\alpha-24+6\ln3\Big]\phantom{\Huge|}\\&+6\,\sqrt3\,\Im\Big[(\alpha-2-2\beta\,i)\,\operatorname{Li}_2(\gamma)-2\,\operatorname{Li}_3(\gamma)\Big]\phantom{\Huge|}\end{align}$$ donde $$\begin{align}&\color{maroon}{\alpha=\ln\!\left(1+x+x^2\right)}\\&\color{orange}{\beta=\arctan(2\,\xi)}\phantom{\Huge|}\\&\color{green}{\gamma=\frac12-i\,\xi}\phantom{\Huge|}\\&\color{blue}{\xi=\frac{1+2x}{2\sqrt3}}\phantom{\Huge|}\end{align}$$

Es válido y continua al menos para $x\ge0$, por lo que es bueno para nuestros propósitos.

Por desgracia, no puedo demostrar un enfoque sistemático que conduce a este resultado, la tengo con una serie de suerte de conjeturas y aplicaciones de PSLQ algoritmo para determinar coeficientes racionales, y, finalmente, demostró su corrección mediante la diferenciación.

Que los rendimientos de la conjetura resultado modulo varios polylogarithm identidades que todavía estoy tratando de probar.

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X