28 votos

$ \int_{0}^{\frac{\pi}{4}}\tan^{-1}\left(\frac{\sqrt{2}\cos3 \phi}{\left(2\cos 2 \phi+ 3\right)\sqrt{\cos 2 \phi}}\right)d\phi$

Evaluar la integral:

$$\displaystyle \int_{0}^{\frac{\pi}{4}}\tan^{-1}\left(\frac{\sqrt{2}\cos3 \phi}{\left(2\cos 2 \phi+ 3\right)\sqrt{\cos 2 \phi}}\right)d\phi$$

No tengo ni idea de cómo atacar. La única cosa que he notado es que existe una simetría alrededor de $\pi/8$, lo que significa que de $\pi/8$ $\pi/4$es el negativo de cero a $\pi/4$. Pero, existe una raíz de el integrando en $\pi/6$ y el límite de el integrando en$\pi/4$$-\infty$.

Conjetura: La integral es $0$ para la razón de simetría que he mencionado anteriormente.

Sin embargo no puedo probarlo. Agradecería su ayuda.

35voto

Roger Hoover Puntos 56

Mediante la sustitución de $\phi$$\arctan(t)$, luego usando integración por partes, tenemos:

$$ I = \int_{0}^{1}\frac{1}{1+t^2}\,\arctan\left(\frac{\sqrt{2}(1-3t^2)}{(5+t^2)\sqrt{1-t^2}}\right)\,dt =\frac{\pi^2}{8}-\int_{0}^{1}\frac{3\sqrt{2}\, t \arctan(t)}{(3-t^2)\sqrt{1-t^2}}\,dt.$$ Ahora viene la magia. Desde: $$\int \frac{3\sqrt{2}\,t}{(3-t^2)\sqrt{1-t^2}}\,dt = -3\arctan\sqrt{\frac{1-t^2}{2}}\tag{1}$$ la integración por partes, una vez más, se obtiene:

$$ I = \frac{\pi^2}{8}-3\int_{0}^{1}\frac{1}{1+t^2}\arctan\sqrt{\frac{1-t^2}{2}}\,dt \tag{2}$$ por lo tanto sólo tenemos que probar que: $$ \int_{0}^{1}\frac{dt}{1+t^2}\,\arctan\sqrt{\frac{1-t^2}{2}}=\int_{0}^{\frac{1}{\sqrt{2}}}\frac{\arctan\sqrt{1-2t^2}}{1+t^2}\,dt=\color{red}{\frac{\pi^2}{24}}\tag{3}$$ y esto no es difícil ya que ambos $$\int_{0}^{1}\frac{dt}{1+t^2}(1-t^2)^{\frac{2m+1}{2}},\qquad \int_{0}^{\frac{1}{\sqrt{2}}}\frac{(1-2t^2)^{\frac{2m+1}{2}}}{1+t^2}\,dt $$ se puede calcular mediante el teorema de los residuos u otras técnicas. Por ejemplo: $$\int_{0}^{1}\frac{(1-t)^{\frac{2m+1}{2}}}{t^{\frac{1}{2}}(1+t)}\,dt = \sum_{n\geq 0}(-1)^n \int_{0}^{1}(1-t)^{\frac{2m+1}{2}} t^{n-\frac{1}{2}}\,dt=\sum_{n\geq 0}(-1)^n\frac{\Gamma\left(m+\frac{3}{2}\right)\Gamma\left(n+\frac{1}{2}\right)}{\Gamma(m+n+2)}$$ o simplemente: $$\int_{0}^{1}\frac{\sqrt{\frac{1-t^2}{2}}}{(1+t^2)\left(1+\frac{1-t^2}{2}u^2\right)}\,dt = \frac{\pi}{2(1+u^2)}\left(1-\frac{1}{\sqrt{2+u^2}}\right)\tag{4}$$ de los cuales: $$\int_{0}^{1}\frac{dt}{1+t^2}\,\arctan\sqrt{\frac{1-t^2}{2}}=\frac{\pi}{2}\int_{0}^{1}\frac{du}{1+u^2}\left(1-\frac{1}{\sqrt{2+u^2}}\right) =\color{red}{\frac{\pi^2}{24}} $$ como quería, ya que: $$ \int \frac{du}{(1+u^2)\sqrt{2+u^2}}=\arctan\frac{u}{\sqrt{2+u^2}}.$$

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X