$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove armada]{\displaystyle{#1}}\,}
\newcommand{\llaves}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
Siguiente $\texttt{@Robert Z}$$\,\,\,$ respuesta:
\begin{align}
\mc{F}\pars{z} & \equiv
{6z^{5} \over 6 - z - z^{2} - z^{3} - z^{4} - z^{5} - z^{6}} =
{6z^{5} \over 6 - z\pars{1 - z^{6}}/\pars{1 - z}}
\\[5mm] & =
6\,{z^{5} - z^{6} \over z^{7} - 7z + 6} =
\sum_{p}r_{p}\pars{{1 \over z - p} + {1 \over p}}
\\[5mm] \mbox{where}\qquad &
\left\{\begin{array}{l}
\ds{p^{7} -7p + 6 = 0}
\\[2mm]
\ds{\left.r_{p}\right\vert_{\ p\ \not=\ 1} \equiv
{6 \over 7}\,{p^{5}\pars{1 - p} \over p^{6} - 1}\,,\qquad r_{1} \equiv
-\,{2 \over 7}}
\\[2mm]
\ds{r_{p}}\ \mbox{is the}\ residue\ \mbox{at pole}\ p.
\end{array}\right.
\\[5mm]
\mbox{Nota que}\quad &
\a la izquierda.r_{p}\right\vert_{\ p\ \=\ 1} = {1 \over 7}\,{p^{6}\pars{1 - p} \over p^{7} - p} =
{6 \más de 7}\,{p^{6}\pars{1 - p} \\pars{7p - 6} - p} =
{1 \over 7}\,{p^{6}\pars{1 - p} \over p - 1} = -\,{p^{6} \más de 7}
\end{align}
Con $\ds{0 < a < \min\braces{\verts{p}}}$:
\begin{align}
a_{n} & =
\oint_{\verts{z} = a}{\mc{F}\pars{z} \over z^{n + 1}}\,{\dd z \over 2\pi\ic} =
{1 \over n!}\,\lim_{z \to 0}\,\totald[n]{\mc{F}\pars{z}}{z} =
{1 \over n!}\,\lim_{z \to 0}
{\sum_{p}r_{p}\,{\pars{-1}^{n}n! \over \pars{z - p}^{n + 1}}} =
-\sum_{p}{r_{p} \over p^{n + 1}}
\\[5mm] & = - r_{1} + {1 \over 7}\sum_{p \not= 1}{1 \over p^{n - 5}} =
{2 \over 7} + {1 \over 7}\sum_{p \not= 1}{1 \over p^{n - 5}}
\implies \bbx{\lim_{n \to \infty}a_{n} = {2 \over 7}}
\end{align}
El $\ds{\,\mc{F}\pars{z}}$ de los polacos, que son diferentes de uno, tiene magnitud mayor que $\ds{\color{#f00}{one}}$ !!!.