6 votos

Encuentra 2 sumas con el binomio newton

Encontrar la suma de:

i)$\displaystyle\sum_{k=0}^{n} k^2$ $\left(\begin{array}{c} n\\k\end{array}\right)$

ii) $\displaystyle\sum_{k=1}^{n} \frac{2k+5}{k+1}$$\left(\begin{array}{c} n\\k\end{array}\right)$


Pensamientos:

i)(After the Edit)$\displaystyle\sum_{k=0}^{n} k^2$ $\left(\begin{array}{c} n\\k\end{array}\right)$ = $\displaystyle\sum_{k=0}^{n} {k(k-1)}$ $\left(\begin{array}{c} n\\k\end{array}\right)$ + $\displaystyle\sum_{k=0}^{n}{k}$ $\left(\begin{array}{c} n\\k\end{array}\right)$= $\displaystyle\sum_{k=0}^{n} {n(k-1)}$ $\left(\begin{array}{c} n-1\\k-1\end{array}\right)$ + $\displaystyle\sum_{k=0}^{n}{n}$ $\left(\begin{array}{c} n-1\\k-1\end{array}\right)$= $\displaystyle\sum_{k=0}^{n} {n(n-1)}$ $\left(\begin{array}{c} n-2\\k-2\end{array}\right)$ + n$\displaystyle\sum_{k=0}^{n}$ $\left(\begin{array}{c} n-1\\k-1\end{array}\right)$= $n(n-1)2^{n-2}+n2^{n-1}$=$n2^{n-2}(2+n-1)$=$n(n+1)2^{n-2}$

II) (después de la edición) $\displaystyle\sum_{k=1}^{n} \frac{2k+5}{k+1}$$\left(\begin{array}{c} n\\k\end{array}\right)$ = $\displaystyle\sum_{k=1}^{n} \frac{(2k+2)+3}{k+1}$$\left(\begin{array}{c} n\\k\end{array}\right)$ = 2$\displaystyle\sum_{k=1}^{n}$$\left(\begin{array}{c} n\\k\end{array}\right)$ + 3$\displaystyle\sum_{k=1}^{n} \frac{1}{k+1}$$\left(\begin{array}{c} n\\k\end{array}\right)$ =

$2^{n+1}-2$+ $\frac{3}{n+1}$$\displaystyle\sum_{k=1}^{n} \frac{n+1}{k+1}$$\left(\begin{array}{c} n\\k\end{array}\right)$= $2^{n+1}-2$+ $\frac{3}{n+1}$$\displaystyle\sum_{k=1}^{n}$$\left(\begin{array}{c} n+1\\k+1\end{array}\right)$= $2^{n+1}-2+\frac{3}{n+1}(2^{n+1}-1)$

5voto

Mario G Puntos 10576

Sugerencia:

II) que podemos ampliar como sigue\begin{align*} \sum_{k=1}^n\frac{2k+5}{k+1}{n\choose k}&=\sum_{k=1}^n\frac{(2k+2)+3}{k+1}{n\choose k}\\[4pt] &=\sum_{k=1}^n 2{n\choose k}+\frac{3}{n+1}\sum_{k=1}^n\frac{n+1}{k+1}{n\choose k}\\[4pt] &=2\sum_{k=1}^n{n\choose k}+\frac{3}{n+1}\sum_{k=1}^n{{n+1}\choose {k+1}} \end{align*}


Nota $$\sum_{k=0}^n{n\choose k}=2^n\qquad\implies\qquad\sum_{k=1}^n{n\choose k}=2^n-1,$ $ entonces,\begin{align*} \sum_{k=1}^n\frac{2k+5}{k+1}{n\choose k}&=2\sum_{k=1}^n{n\choose k}+\frac{3}{n+1}\sum_{k=1}^n{{n+1}\choose {k+1}}=2(2^n-1)+\frac{3}{n+1}(2^{n+1}-1) \end{align*} que puede reducirse como $$\sum_{k=1}^n\frac{2k+5}{k+1}{n\choose k}=\frac{2^{n+1}(n+4)-2n-5}{n+1}$ $

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X