Encontrar la suma de:
i)$\displaystyle\sum_{k=0}^{n} k^2$ $\left(\begin{array}{c} n\\k\end{array}\right)$
ii) $\displaystyle\sum_{k=1}^{n} \frac{2k+5}{k+1}$$\left(\begin{array}{c} n\\k\end{array}\right)$
Pensamientos:
i)(After the Edit)$\displaystyle\sum_{k=0}^{n} k^2$ $\left(\begin{array}{c} n\\k\end{array}\right)$ = $\displaystyle\sum_{k=0}^{n} {k(k-1)}$ $\left(\begin{array}{c} n\\k\end{array}\right)$ + $\displaystyle\sum_{k=0}^{n}{k}$ $\left(\begin{array}{c} n\\k\end{array}\right)$= $\displaystyle\sum_{k=0}^{n} {n(k-1)}$ $\left(\begin{array}{c} n-1\\k-1\end{array}\right)$ + $\displaystyle\sum_{k=0}^{n}{n}$ $\left(\begin{array}{c} n-1\\k-1\end{array}\right)$= $\displaystyle\sum_{k=0}^{n} {n(n-1)}$ $\left(\begin{array}{c} n-2\\k-2\end{array}\right)$ + n$\displaystyle\sum_{k=0}^{n}$ $\left(\begin{array}{c} n-1\\k-1\end{array}\right)$= $n(n-1)2^{n-2}+n2^{n-1}$=$n2^{n-2}(2+n-1)$=$n(n+1)2^{n-2}$
II) (después de la edición) $\displaystyle\sum_{k=1}^{n} \frac{2k+5}{k+1}$$\left(\begin{array}{c} n\\k\end{array}\right)$ = $\displaystyle\sum_{k=1}^{n} \frac{(2k+2)+3}{k+1}$$\left(\begin{array}{c} n\\k\end{array}\right)$ = 2$\displaystyle\sum_{k=1}^{n}$$\left(\begin{array}{c} n\\k\end{array}\right)$ + 3$\displaystyle\sum_{k=1}^{n} \frac{1}{k+1}$$\left(\begin{array}{c} n\\k\end{array}\right)$ =
$2^{n+1}-2$+ $\frac{3}{n+1}$$\displaystyle\sum_{k=1}^{n} \frac{n+1}{k+1}$$\left(\begin{array}{c} n\\k\end{array}\right)$= $2^{n+1}-2$+ $\frac{3}{n+1}$$\displaystyle\sum_{k=1}^{n}$$\left(\begin{array}{c} n+1\\k+1\end{array}\right)$= $2^{n+1}-2+\frac{3}{n+1}(2^{n+1}-1)$