$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove armada]{\displaystyle{#1}}\,}
\newcommand{\llaves}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
&\int_{0}^{\infty}
{\ln\pars{x}\sin\pars{x}\cos\pars{x\over \root{\phi}} \over x}\,\dd x
\\[5mm] = &\
{1 \over 2}\int_{0}^{\infty}
{\ln\pars{x}\sin\pars{\bracks{1 + \phi^{-1/2}}x}\over x}\,\dd x +
{1 \over 2}\int_{0}^{\infty}
{\ln\pars{x}\sin\pars{\bracks{1 - \phi^{-1/2}}x}\over x}\,\dd x
\\[5mm] = &\
{1 \over 2}\int_{0}^{\infty}
{\ln\pars{x/\bracks{1 + \phi^{-1/2}}}\sin\pars{x}\over x}\,\dd x +
{1 \over 2}\int_{0}^{\infty}
{\ln\pars{x/\bracks{1 - \phi^{-1/2}}}\sin\pars{x}\over x}\,\dd x
\\[5mm] = &\
-\,{1 \over 2}\,\ln\pars{1 - \phi^{-1}}
\int_{0}^{\infty}{\sin\pars{x} \over x}\,\dd x + \int_{0}^{\infty}\ln\pars{x}\,{\sin\pars{x} \over x}\,\dd x
\\[5mm] = &\
-\,{\pi \over 4}\,\ln\pars{1 - \phi^{-1}} +
\bbox[#ffd,10px]{\ds{%
\int_{0}^{\infty}\ln\pars{x}\,{\sin\pars{x} \over x}\,\dd x}}
\end{align}
\begin{align}
&\bbox[#ffd,10px]{\ds{%
\int_{0}^{\infty}\ln\pars{x}\,{\sin\pars{x} \over x}\,\dd x}} =
\left.\partiald{}{\mu}\Im\int_{0}^{\infty}x^{\mu - 1}\expo{\ic x}
\,\dd x\,\right\vert_{\ \mu\ =\ 0^{+}}
\\[5mm] = &\
\left.\partiald{}{\mu}\Im\int_{0}^{\infty\ic}x^{\mu - 1}\expo{\ic\pars{1 - \mu}\pi/2}\expo{-x}
\pars{-\ic}\,\dd x\,\right\vert_{\ \mu\ =\ 0^{+}}
\\[5mm] = &\
\partiald{}{\mu}\bracks{\sin\pars{\mu\,{\pi \over 2}}
\Gamma\pars{\mu}}_{\ \mu\ =\ 0^{+}} =
\left.{1 \over 2}\,\pi\,\partiald{\Gamma\pars{\mu + 1}}{\mu}
\right\vert_{\ \mu\ =\ 0^{+}} = -\,{1 \over 2}\,\pi\gamma
\end{align}
$$
\bbx{\ds{\int_{0}^{\infty}
{\ln\pars{x}\sin\pars{x}\cos\pars{x\\raíz{\phi}} \over x}\,\dd x =
{\pi \over 2}\bracks{-\,{1 \over 2}\,\ln\pars{1 - \phi^{-1}} - \gamma}}}
$$
Tenga en cuenta que
$\ds{-\ln\pars{1 - \phi^{-1}} = \ln\pars{3 + \root{5} \over 2}}$.
Desde $\ds{\phi^{2} - \phi - 1 = 0 \implica
-\,{1 \over 2}\,\ln\pars{1 - \phi^{-1}} =
\ln\pars{\phi}}$, una expresión alternativa es
$$
\bbx{\ds{\int_{0}^{\infty}
{\ln\pars{x}\sin\pars{x}\cos\pars{x\\raíz{\phi}} \over x}\,\dd x =
\color{#f00}{+}\,{1 \over 2}\,\pi\bracks{\ln\pars{\phi} - \gamma}}}
$$