$\newcommand{\+}{^{\daga}}
\newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, nº 1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\down}{\downarrow}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\isdiv}{\,\left.\a la derecha\vert\,}
\newcommand{\cy}[1]{\left\vert #1\right\rangle}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left (\, nº 1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\vphantom{\large Un}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}
\newcommand{\wt}[1]{\widetilde{#1}}$
$\ds{\int_{-a}^{a}{x^{2} \over x^{4} + 1}\,\dd x:\ {\large ?}.\qquad
un \in {\mathbb R}}$.
$$
\color{#c00000}{\int_{-a}^{a}{x^{2} \over x^{4} + 1}\,\dd x}
=2\sgn\pars{un}\int_{0}^{\verts{a}}{x^{2} \over x^{4} + 1}\,\dd x
$$
Con
$\ds{t \equiv {1 \over x^{4} + 1}\quad\imp\quad x = \pars{{1 \over t} - 1}^{1/4}}$:
\begin{align}
&\color{#c00000}{\int_{-a}^{a}{x^{2} \over x^{4} + 1}\,\dd x}
=
2\sgn\pars{a}\int_{1}^{1/\pars{a^{4} + 1}}t\pars{{1 \over t} - 1}^{1/2}
\bracks{{1 \over 4}\,\pars{{1 \over t} - 1}^{-3/4}\,\pars{-\,{1 \over t^{2}}}\,\dd t}
\\[3mm]&=\half\,\sgn\pars{a}\int^{1}_{1/\pars{a^{4} + 1}}
t^{-3/4}\pars{1 - t}^{-1/4}\,\dd t
\\[3mm]&=\half\,\sgn\pars{a}\bracks{%
\int^{1}_{0}t^{-3/4}\pars{1 - t}^{-1/4}\,\dd t
-
\int_{0}^{1/\pars{a^{4} + 1}}t^{-3/4}\pars{1 - t}^{-1/4}\,\dd t}
\\[3mm]&=\half\,\sgn\pars{a}\bracks{%
{\rm B}\pars{{1 \over 4},{3 \over 4}}
-{\rm B}\pars{{1 \over a^{4} + 1};{1 \over 4},{3 \over 4}}}
\end{align}
donde $\ds{{\rm B}}$'s son Beta Funciones.
Por otra parte,
$\ds{{\rm B}\pars{{1 \over 4},{3 \más de 4}} = \Gamma\pars{1 \over 4}
\Gamma\pars{3 \más de 4} = {\pi \\sin\pars{\pi/4}} = \raíz{2}\,\pi}$.
$\ds{\Gamma\pars{z}}$ es la
La Función Gamma y hemos utilizado las propiedades ya conocidas de $\ds{\rm B}$'s y $\ds{\Gamma}$'s.
$$
\color{#00f}{\large\int_{-a}^{a}{x^{2} \over x^{4} + 1}\,\dd x
=\media\,\sgn\pars{un}\bracks{\raíz{2}\pi
-{\rm B}\pars{{1 \over un^{4} + 1};{1 \más de 4},{3 \más de 4}}}}
$$