Demostrar que $$\int_0^1 \psi{(x) \sin(2 n \pi x)} \space\mathrm{dx}=-\frac{\pi}{2}, \space n\ge1$ $ donde $\psi(x)$ - función digamma
Respuestas
¿Demasiados anuncios?Aquí le damos otro enfoque utilizando la representación integral de $\psi$. Asumimos $n$ es un entero mayor o igual a uno. Entonces $$ \begin{eqnarray*} \int_0^1 dx\, \sin(2n\pi x) \psi(x) &=& \int_0^1 dx\, \sin(2n\pi x) \int_0^\infty dt\, \left( \frac{e^{-t}}{t} - \frac{e^{-x t}}{1-e^{-t}} \right) \\ &=& \int_0^\infty dt\, \left( \frac{e^{-t}}{t} \int_0^1 dx\, \sin(2n\pi x) - \frac{1}{1-e^{-t}} \int_0^1 dx\, \sin(2n\pi x)e^{-x t} \right). \end{eqnarray *} $$ pero $ de $\int_0^1 dx\, \sin(2n\pi x) = 0$ y $$\int_0^1 dx\, \sin(2n\pi x)e^{-x t} = \frac{2n\pi}{t^2+4n^2\pi^2}(1-e^{-t}).$ (detalles para la segunda integral se puede dar si es necesario). Por lo tanto $$ \begin{eqnarray*} \int_0^1 dx\, \sin(2n\pi x) \psi(x) &=& -\int_0^\infty dt\, \frac{2n\pi}{t^2+4n^2\pi^2} \\ &=& -\frac{\pi}{2}. \end{eqnarray *} $$
Por la diferenciación de registro de fórmula de reflexión de Euler, tenemos
$$ \psi_0(x) - \psi_0(1-x) = -\pi \cot (\pi x). $$
Por lo tanto tenemos
\begin{align*} \int_{0}^{1}\psi_0(x) \sin (2\pi n x) \, dx &= \frac{1}{2}\int_{0}^{1}\psi_0(x) \sin (2\pi n x) \, dx - \frac{1}{2}\int_{0}^{1}\psi_0(1-x) \sin (2\pi n x) \, dx \\ &= -\frac{\pi}{2} \int_{0}^{1} \frac{\sin (2\pi n x)}{\sin (\pi x)} \, \cos (\pi x) \, dx \\ &= -\frac{1}{2} \int_{0}^{\pi} \frac{\sin (2 n \theta)}{\sin \theta} \, \cos \theta \, d\theta \\ &= - \int_{0}^{\frac{\pi}{2}} \frac{\sin (2 n \theta)}{\sin \theta} \, \cos \theta \, d\theta. \end{align*}
Ahora el resto se sigue publicando en mi blog.