Consideremos la función f(t)=t−1/2e2πit1/2=g0(h(t))e2iπt1/2, donde g0(u)=1u,h(t)=t1/2,h′(t)=12t−1/2=12u. Dejemos que f(n)(t)=gn(h(t))e2πit, entonces f(n)(t)=(gn−1(h(t))e2πit)′h′(t)=(g′n−1+2πign−1)e2iπt12u, gn=12ug′n−1+iπugn−1. Por ejemplo, g1(u)=12u(−1u2)+iπu2=−12u3+iπu2, g2(u)=12u(−12u3+iπu2)′+iπu(−12u3+iπu2) =12u(32u4−2iπu3)+(−iπ2u4−π2u3)=(34u5−3πi2u4−π2u3), g3(u)=12u(34u5−3πi2u4−π2u3)′+iπu(34u5−3πi2u4−π2u3) =12u(−154u6+6πiu5+3π2u4)+(3iπ4u6+3π22u5−iπ3u4) =(−158u7+15πi4u6+3π2u5−π3iu4),…
Se pueden obtener valores de la función F(t)=sin2π√t√t=ℑf(t) y sus derivaciones F(n)(t)=ℑf(n)(t)=ℜgn(√t)sin2π√t+ℑgn(√t)cos2π√t en t=−1 .
Por ejemplo, F(−1)=sinh(±2πi)±i=sinh2π, F′(−1)=(−12t3/2sin2π√t+πtcos(2π√t))|t=−1 =sin(±2πi)±2i−πcos(±2πi)=12sinh2π−πcosh2π, F″ = \left({3\over4} + {\pi^2}\right)\sinh(2\pi) - {3\pi\over2}\cosh(2\pi), F'''(-1) = \left.\left(\left(-{15\over8t^{7/2}} + {3\pi^2\over t^{5/2}}\right) \sin(2\pi\sqrt{t\,}) + \left({15\pi\over4t^3} - {\pi^3\over t^2}\right)\cos(2\pi\sqrt{t\,})\right)\right|_{t=-1} = \left({15\over8} + {3\pi^2}\right)\sinh(2\pi) - \left({15\pi\over4} + \pi^3\right)\cosh(2\pi)\dots La serie de Taylor en la vecindad del punto t=-1 tiene la forma F(t) = {\sin2\pi\sqrt t\over\sqrt t} = {\sinh2\pi} + \sum_{n=1}^\infty c_n(t+1)^n,\tag5 donde c_n = {1\over n!}F^{(n)}(-1)\tag6 (véase también Wolfram Alfa ), y la serie converge para t\in\mathbb R.
Sustitución t=z^2 da la serie en forma de {\sin2\pi z\over z} = {\sinh2\pi} + \sum_{n=1}^\infty c_n(z^2+1)^n, así que {\sin2\pi z\over z(z^2+1)} = {c_0\over z^2+1} + \sum_{n=1}^\infty c_n(z^2+1)^{n-1} = {1\over2i}{c_0\over(z-i)\left(1+\dfrac{z-i}{2i}\right)} + \sum_{n=0}^\infty c_{n+1}(z-i)^n(z-i+2i)^n = c_0(z-i)^{-1}\sum_{n=0}^\infty(-1)^n{(z-i)^n\over(2i)^{n+1}} + \sum_{n=0}^\infty c_{n+1}\sum_{k=0}^n\genfrac{(}{)}{0}{0}{n}{k}(2i)^{n-k}(z-i)^{n+k}. Sustitución m=n+k\ en la suma doble da {\sin2\pi z\over z(z^2+1)}= c_0\sum_{n=0}^\infty(-1)^n{(z-i)^{n-1}\over(2i)^{n+1}} + \sum_{m=0}^\infty \sum_{k=0}^\left[{m\over2}\right]c_{m-k+1}\genfrac{(}{)}{0}{0}{m-k}{k}(2i)^{m-2k}(z-i)^m = -{c_0i\over2}(z-i)^{-1}+ {c_0\over4}\sum_{m=0}^\infty\left({i\over2}\right)^m(z-i)^m + \sum_{m=0}^\infty \left(i^m(z-i)^m \sum_{k=0}^\left[{m\over2}\right]i^{-2k}c_{m-k+1}\genfrac{(}{)}{0}{0}{m-k}{k}2^{m-2k}\right) = -{c_0i\over2}(z-i)^{-1}+ \sum_{m=0}^\infty \left(c_02^{-(m+2)} + \sum_{k=0}^\left[{m\over2}\right](-1)^k c_{m-k+1}\genfrac{(}{)}{0}{0}{m-k}{k}2^{m-2k}\right)i^m(z-i)^m = -{c_0i\over2}(z-i)^{-1} + {c_0\over4} + c_1 + \left({c_0\over8} + 2c_2\right)i(z-i) - \left({c_0\over16} + 4c_3 - c_2\right)(z-i)^2 + \dots,
donde c_0 = \sinh2\pi, c_1 = {1\over2}\sinh2\pi - \pi\cosh2\pi, c_2 = \left({3\over8} + {\pi^2\over2}\right)\sinh2\pi - {3\pi\over4}\cosh2\pi, c_3 = \left({5\over16} + {\pi^2\over2}\right)\sinh2\pi - \left({5\pi\over8} + {\pi^3\over6}\right)\cosh2\pi,\,\dots
Es decir , \boxed{{\sin2\pi z\over z(z^2+1)} = - {i\sinh2\pi\over2}(z-i)^{-1}+ {3\over4}\sinh2\pi - \pi\cosh2\pi + i\left(\left({7\over8} + \pi^2\right)\sinh2\pi - {3\pi\over2}\cosh2\pi\right)(z-i) + \left(-\left({15\over16} + {3\pi^2\over2}\right)\sinh2\pi + \left({7\pi\over4}+{2\pi^3\over3}\right)\cosh2\pi\right)(z-i)^2 + \dots}