24 votos

Estimación de parámetros de distribución gamma con media de la muestra y std

Estoy tratando de estimar los parámetros de una distribución gamma que se adapta mejor a mis datos de la muestra. Sólo quiero usar la media, std (y, por tanto, la varianza) de la muestra de datos, no los valores reales - ya que estos no estará siempre disponible en mi aplicación.

Según este documento, las siguientes fórmulas se pueden aplicar para la estimación de la forma y la escala: formulas

He intentado esto para mi de datos, sin embargo los resultados son muy diferentes en comparación con el ajuste de una distribución gamma en el real de datos a través de una programación python biblioteca.

Me fije mis datos/código para mostrar el tema en cuestión:

import matplotlib.pyplot as plt
import numpy as np
from scipy.stats import gamma

data = [91.81, 10.02, 27.61, 50.48, 3.34, 26.35, 21.0, 79.27, 31.04, 8.85, 109.2, 15.52, 11.03, 41.09, 10.75, 96.43, 109.52, 33.28, 7.66, 65.44, 52.43, 19.25, 10.97, 586.52, 56.91, 157.18, 434.74, 16.07, 334.43, 6.63, 108.41, 4.45, 42.03, 39.75, 300.17, 4.37, 343.19, 32.04, 42.57, 29.53, 276.75, 15.43, 117.67, 75.47, 292.43, 457.91, 5.49, 17.69, 10.31, 58.91, 76.94, 37.39, 64.46, 187.25, 30.0, 9.94, 83.05, 51.11, 17.68, 81.98, 4.41, 33.24, 20.36, 8.8, 846.0, 154.24, 311.09, 120.72, 65.13, 25.52, 50.9, 14.27, 17.74, 529.82, 35.13, 124.68, 13.21, 88.24, 12.12, 254.32, 22.09, 61.7, 88.08, 18.75, 14.34, 931.67, 19.98, 50.86, 7.71, 5.57, 8.81, 14.49, 26.74, 13.21, 8.92, 26.65, 10.09, 7.74, 21.23, 66.35, 31.81, 36.61, 92.29, 26.18, 20.55, 17.18, 35.44, 6.63, 69.0, 8.81, 19.87, 5.46, 29.81, 122.01, 57.83, 33.04, 9.91, 196.0, 34.26, 34.31, 36.55, 7.74, 6.68, 6.83, 18.83, 6.6, 50.78, 95.65, 53.91, 81.62, 57.96, 26.72, 76.25, 5.48, 4.43, 133.04, 33.37, 45.26, 30.51, 9.98, 11.08, 28.95, 71.25, 70.65, 3.34, 12.28, 111.67, 139.86, 23.34, 30.0, 26.38, 33.51, 1112.64, 25.87, 148.59, 552.79, 11.11, 47.8, 7.8, 9.98, 7.69, 85.46, 3.59, 122.71, 32.09, 82.51, 12.14, 12.57, 8.8, 49.61, 95.41, 26.99, 13.29, 4.57, 7.78, 4.4, 6.66, 12.17, 12.18, 1533.01, 22.95, 15.93, 14.82, 2.2, 12.04, 9.94, 17.64, 6.66, 18.64, 83.66, 142.99, 30.76, 67.57, 9.88, 46.44, 19.5, 22.2, 43.1, 653.67, 9.86, 7.69, 7.74, 27.19, 38.64, 12.32, 182.34, 43.13, 3.28, 14.32, 69.78, 32.2, 17.66, 18.67, 4.4, 9.05, 56.94, 33.32, 13.2, 15.07, 12.73, 3.32, 35.44, 14.35, 66.68, 51.28, 6.86, 75.49, 5.54, 21.0, 24.2, 38.1, 13.31, 7.78, 5.76, 51.86, 11.09, 20.71, 36.74, 21.97, 10.36, 32.04, 96.94, 13.93, 51.84, 6.88, 27.58, 100.56, 20.97, 828.16, 6.63, 32.15, 19.92, 253.23, 25.35, 23.35, 17.6, 43.18, 19.36, 13.7, 3.31, 22.99, 26.58, 4.43, 2.22, 55.46, 22.34, 13.24, 86.18, 181.29, 52.15, 5.52, 21.12, 34.24, 49.78, 14.37, 39.73, 78.22, 26.6, 20.19, 26.57, 105.8, 11.08, 46.47, 52.82, 13.46, 8.0, 7.74, 49.73, 4.4, 5.44, 51.7, 28.64, 8.95, 9.15, 4.46, 21.03, 29.92, 19.89, 4.38, 19.94, 7.77, 23.43, 57.07, 86.5, 12.82, 103.85, 39.63, 8.83, 42.32, 17.02, 14.29, 16.75, 24.4, 27.97, 8.83, 8.91, 24.23, 6.58, 30.97, 150.58, 122.73, 17.69, 37.11, 11.05, 298.23, 25.58, 9.91, 38.85, 17.24, 82.17, 42.11, 3.29, 38.63, 27.55, 18.22, 127.16, 57.66, 34.45, 41.26, 45.91, 9.88, 34.48, 484.33, 58.42, 30.09, 6.69, 254.49, 1313.58, 39.89, 3.31, 7.83, 10.98, 13.21, 67.78, 7.77, 117.72, 20.03, 83.23, 31.28, 38.97, 6.63, 6.63, 36.6, 22.12, 154.57, 112.65, 19.88, 674.18, 83.31, 5.54, 8.81, 11.06, 178.33, 30.47, 1180.39, 79.33, 37.74, 86.3, 16.61, 53.94, 52.78, 20.83, 11.15, 26.68, 86.04, 180.26, 99.62, 11.17, 28.74, 56.85, 15.51, 95.37, 44.09, 6.68, 12.14, 6.72, 19.81, 10.05, 34.26, 69.84, 14.35, 17.72, 8.81, 20.86, 37.69, 24.62, 72.11, 8.83, 7.69, 60.79, 20.02, 9.41, 13.24, 29.8, 43.09, 25.34, 174.34, 161.6, 119.34, 30.08, 54.15, 7.74, 249.29, 9.98, 21.87, 38.92, 98.45, 95.07, 7.74, 4.45, 81.98, 12.18, 28.66, 5.58, 59.94, 22.15, 9.98, 18.86, 6.69, 134.97, 13.29, 4.43, 8.88, 5.74, 25.16, 122.39, 3.53, 6.68, 3.4, 17.58, 62.51, 584.3, 46.63, 21.19, 22.14, 5.74, 8.19, 7.74, 7.64, 4.41, 3.32, 130.76, 3.29, 31.04, 3.26, 18.83, 168.31, 7.68, 120.19, 43.95, 747.12, 18.75, 306.24, 29.72, 5.57, 6.65, 53.2, 7.96, 25.34, 25.57, 8.85, 93.59, 92.96, 23.4, 60.0, 6.63, 12.15, 49.98, 39.75, 7.77, 5.73, 18.74, 11.58, 281.32, 13.99, 4.59, 13.35, 25.05, 9.98, 5.58, 91.43, 288.94, 15.43, 7.8, 9.92, 18.69, 6.63, 78.38, 18.86, 63.03, 26.38, 166.41, 27.78, 54.21, 173.32, 11.12, 17.85, 14.43, 31.31, 3.37, 16.63, 5.51, 77.74, 8.89, 17.71, 3.24, 9.28, 22.12, 2.2, 19.41, 12.23, 22.31, 9.36, 18.85, 51.5, 8.3, 23.0, 29.7, 29.81, 4.65, 75.77, 55.52, 144.45, 6.68, 13.26, 72.78, 56.71, 46.35, 6.63, 8.88, 6.61, 41.7, 15.09, 5.51, 18.78, 74.09, 487.0, 27.52, 18.99, 44.18, 41.76, 6.65, 23.62, 175.68, 446.38, 87.13, 165.69, 16.57, 7.88, 16.57, 80.17, 135.75, 3.29, 134.16, 25.58, 45.13, 114.23, 471.15, 97.75, 12.2, 32.01, 62.21, 22.36, 193.55, 210.65, 42.39, 27.57, 106.15, 44.76, 16.6, 134.76, 18.81, 14.76, 7.97, 160.59, 39.21, 60.36, 62.45, 72.18, 91.15, 23.71, 105.04, 70.87, 25.57, 122.09, 60.09, 38.8, 133.87, 4.41, 13.28, 45.63, 45.41, 67.81, 26.68, 97.33, 723.5, 5.51, 164.05, 165.32, 4.45, 57.67, 85.82, 11.56, 12.26, 17.97, 31.04, 76.72, 15.01, 35.88, 32.37, 23.63, 85.57, 9.34, 4.45, 90.25, 73.71, 45.99, 14.24, 176.85, 65.21, 9.92, 15.02, 12.9, 21.4, 59.94, 64.62, 37.53, 147.89, 36.52, 97.67, 16.65, 22.1, 23.38, 76.85, 16.58, 7.72, 17.75, 91.25, 9.91, 18.46, 4.45, 3.29, 73.18, 19.5, 5.58, 18.85, 28.64, 7.8, 43.74, 4.43, 7.99, 132.4, 41.48, 14.45, 8.78, 8.14, 9.95, 2.46, 16.61, 32.71, 17.74, 4.46, 68.25, 34.55, 9.92, 181.31, 37.63, 125.22, 25.37, 24.45, 220.92, 11.09, 35.46, 588.56, 58.21, 22.39, 78.55, 135.13, 280.65, 273.41, 381.07, 60.56, 68.63, 40.17, 27.68, 23.68, 23.15, 28.8, 20.94, 21.92, 159.06, 9.94, 127.52, 32.4, 15.93, 99.09, 48.31, 104.66, 257.4, 117.08, 180.32, 66.55, 95.99, 17.74, 30.14, 270.54, 39.8, 54.77, 16.04, 76.99, 5.43, 8.78, 76.96, 10.39, 18.47, 290.11, 48.35, 289.06, 10.44, 57.75, 47.83, 101.62, 96.3, 71.62, 256.97, 149.45, 22.17, 23.15, 89.25, 36.46, 90.03, 69.14, 28.27, 28.72, 17.44, 43.38, 56.72, 84.96, 25.4, 55.06, 47.68, 92.11, 6.65, 30.94, 15.38, 27.44, 516.55, 5.83, 19.45, 41.53, 110.69, 6.82, 54.09, 13.31, 89.8, 25.57, 110.89, 3.32, 93.76, 33.81, 80.87, 30.9, 58.53, 185.22, 4.38, 58.75, 189.53, 7.19, 7.8, 48.97, 28.8, 48.52, 45.96, 309.44, 29.16, 2.22, 255.91, 78.7, 102.67, 33.32, 43.2, 19.5, 91.59, 139.89, 5.51, 213.96, 10.02, 10.03, 39.87, 8.95, 27.74, 7.78, 65.93, 45.41, 263.21, 33.06, 5.54, 59.77, 2.2, 9.95, 14.38, 44.76, 96.45, 15.91, 133.07, 38.03, 36.43, 7.83, 105.41, 20.5, 25.35, 20.55, 119.59, 24.31, 28.81, 101.0, 67.0, 143.85, 20.55, 83.45, 60.62, 25.19, 6.65, 1745.95, 41.62, 44.96, 65.42, 9.92, 24.23, 73.56, 34.35, 75.72, 18.77, 88.59, 312.55, 56.43, 106.61, 11.44, 22.04, 5.73, 197.92, 25.32, 144.83, 145.36, 4.43, 18.33, 48.72, 33.42, 8.83, 18.85, 32.25, 88.56, 14.95, 147.39, 9.25, 35.24, 141.51, 14.41, 5.49, 42.28, 75.69, 16.96, 6.71, 17.33, 710.34, 68.92, 28.39, 24.98, 33.03, 31.06, 46.24, 36.77, 43.74, 11.48, 22.14, 13.21, 15.8, 21.9, 5.51, 20.66, 22.04, 127.0, 21.03, 36.75, 61.45, 42.12, 238.3, 57.43, 28.61, 31.31, 15.43, 8.88, 54.26, 34.01, 5.79, 8.02, 25.68, 19.67, 29.19, 4.38, 15.05, 5.57, 32.31, 81.68, 29.92, 397.98, 119.2, 5.52, 25.54, 12.78, 17.78, 100.97, 253.58, 8.92, 22.04, 22.03, 86.57, 97.27, 106.29, 33.31, 13.34, 35.57, 40.75, 6.57, 23.32, 6.63, 30.09, 62.39, 35.62, 25.23, 5.49, 77.67, 4.41, 8.77, 12.09, 32.0, 7.75, 25.44, 27.57, 25.51, 81.59, 8.83, 64.15, 48.92, 52.25, 2.2, 13.29, 15.52, 320.64, 22.26, 21.03, 79.27, 6.61, 59.38, 40.19, 43.07, 2.26, 20.97, 8.8, 205.43, 51.82, 8.78, 90.72, 6.63, 14.46, 85.62, 72.53, 29.24, 68.81, 67.6, 1.15, 13.15, 17.71, 20.06, 77.42, 167.72, 5.54, 34.45, 5.51, 54.04, 7.8, 79.91, 4.62, 66.39, 164.13, 78.1, 49.72, 19.92, 28.92, 709.25, 18.19, 875.38, 60.92, 5.55, 71.14, 301.2, 27.74, 34.26, 108.78, 88.28, 75.83, 7.82, 8.78, 44.68, 20.98, 41.9, 8.88, 124.18, 198.8, 180.0, 71.61, 119.27, 59.33, 3.28, 43.88, 14.46, 64.34, 158.59, 41.98, 32.28, 14.43, 48.49, 2.36, 14.38, 25.52, 7.83, 2.2, 292.18, 8.97, 36.18, 7.8, 8.89, 43.26, 25.35, 12.29, 6.88, 34.48, 11.09, 16.57, 35.99, 13.45, 6.6, 162.65, 13.23, 26.91, 55.62, 61.4, 48.47, 89.62, 7.77, 6.65, 11.56, 23.28, 6.66, 7.74, 4.62, 5.8, 24.56, 10.16, 8.91, 14.45, 25.37, 6.61, 75.29, 11.03, 36.75, 38.61, 36.52, 17.75, 61.87, 31.92, 120.9, 144.82, 70.98, 19.98, 80.09, 30.17, 35.48, 2.4, 42.15, 24.29, 111.26, 71.9, 158.23, 49.75, 7.75, 13.28, 10.97, 5.51, 34.37, 56.61, 138.83, 231.4, 20.17, 29.89, 20.27, 7.69, 77.35, 12.26, 1144.41, 9.95, 7.72, 196.64, 499.4, 114.38, 24.43, 94.88, 75.15, 4.48, 8.89, 196.05, 95.15, 99.28, 42.36, 234.32, 4.59, 80.97, 237.69, 89.34, 4.51, 6.68, 148.42, 108.58, 5.48, 132.38, 7.94, 204.74, 11.08, 74.24, 146.22, 79.5, 17.68, 10.51, 550.77, 45.35, 23.28, 47.57, 40.56, 114.76, 29.81, 15.51, 11.0, 26.61, 6.74, 142.82, 12.17]

Un poco de información acerca de los datos:

Significa: 68.71313036020582, Varianza: 19112.931263699986, Desviación Estándar: 138.24952536518882, la Cantidad de elementos de los datos de entrenamiento: 1166

Histograma de los datos:

enter image description here

El uso de la biblioteca de python para el montaje:

x = np.linspace(0,300,1000)
# Gamma
shape, loc, scale = gamma.fit(data, floc=0)
print(shape, loc, scale)
y = gamma.pdf(x, shape, loc, scale)
plt.title('Fitted Gamma')
plt.plot(x, y)
plt.show()

fitted gamma

Parámetros: 0.7369587045435088 0 93.2387797804

Estimado yo mismo:

def calculateGammaParams(data):
    mean = np.mean(data)
    std = np.std(data)
    shape = (mean/std)**2
    scale = (std**2)/mean
    return (shape, 0, scale)

eshape, eloc, escale = calculateGammaParams(data)
print(eshape, eloc, escale)
ey = gamma.pdf(x, eshape, eloc, escale)
plt.title('Estimated Gamma')
plt.plot(x, ey)
plt.show()

estimated

Parámetros: 0.247031406055 0 278.155443705

Claramente se puede ver una gran diferencia.

16voto

AdamSane Puntos 1825

Tanto la Emv y de momento esitmators son consistentes, por lo que sería de esperar que en lo suficientemente grandes muestras de una distribución gamma que había tienden a ser bastante similares. Sin embargo, no necesariamente será igual cuando la distribución no está cerca de un gamma.

Si se examina la distribución del logaritmo de los datos, que es más o menos simétrica - o, de hecho, en realidad, un poco a la derecha de sesgo. Esto indica que la gamma modelo es inadecuado (para una gamma el registro debe estar a la izquierda de sesgo).

Puede ser que una inversa gamma modelo puede funcionar mejor para estos datos. Pero el mismo suave derecha=sesgo en los registros sería con cualquier número de otras distribuciones, no podemos decir mucho, seguro basado en la dirección de la asimetría en la escala logarítmica.

Esto puede ser parte de la explicación de por qué los dos conjuntos de estimaciones son disímiles; el método de los momentos y la Emv no tienden a ser coherentes entre sí.

Puedes calcular la inversa de la gamma de los parámetros de la inversión de los datos, el ajuste de gamma, y luego mantener los parámetros estimados como es. También puede obtener una estimación logarítmica normal de los parámetros de la media y la desviación estándar (varios puestos en el sitio de mostrar cómo, o ver wikipedia), pero el más pesado de la cola de la distribución, en el peor de los método de los momentos peritos tienden a ser.


Parece (a partir de los comentarios de abajo de mi respuesta) que el verdadero problema es que las estimaciones de los parámetros debe ser actualizado "en-línea" - para tomar sólo la información de resumen de toda la información y actualización de las estimaciones de los parámetros de la información de resumen. La razón para el uso de la media muestral y la varianza de la pregunta es que se puede actualizar de forma rápida.

Sin embargo, no son las únicas cosas que se pueden actualizar de forma rápida!

Distribuciones en el exponencial de la familia, donde $f_{X}(x\mid \theta )=\exp \left(\eta (\theta )\cdot T(x)-A(\theta )+B(x)\right)\,$ tienen suficiente estadística, $T(x)$.

(NB aquí $\theta$ es un vector de parámetros, y $T$ es el vector de las estadísticas suficientes -- de la misma dimensión)

Para todas las distribuciones de discutir (gamma, lognormal, gamma inversa) la suficiente estadísticas se actualizan con facilidad. Por razones de estabilidad, sugiero la actualización de las siguientes cantidades (que entre ellos son suficientes para las tres distribuciones):

  • la media de los datos

  • la media de los registros de los datos

  • la varianza de los registros de los datos

Para la máxima probabilidad, tendría que utilizar $s^2_n$ más que el de Bessel-versión corregida de la varianza, pero no importa mucho (y si la actualización de la Bessel-versión corregida usted puede obtener el $n$-denominador versión fácilmente, así que no importa lo que la actualización).

Estable de varianza, las actualizaciones deben ser utilizados. [No actualización de la media de los cuadrados y el uso de $\frac{1}{n}\sum x_i^2-\bar{x}^2$ calcular la varianza -- que está pidiendo problemas.]

[Si desea evaluar la adecuación del modelo a través del tiempo, se desea almacenar más de las estadísticas suficientes. Binned de datos puede servir para eso. Un par de cien (es decir 500 o así) bien elegido contenedores será apenas distinguible en una parcela a partir de datos en bruto (incluso en un Q-Q plot), pero bin cuenta tome poco de espacio para almacenar y son de rápida actualización. Usted va a necesitar una gama mucho más amplia de las papeleras que se espera que los datos para tomar, así que tal vez 2000 contenedores total, incluso si sólo una fracción de ellos podría ser utilizado en una parcela, y usted necesitará final papeleras de que la cubierta de valores en los extremos de la gama posible de la variable ( $0$ $\infty$ ). Yo sugeriría que el agrupamiento de los registros en lugar de los datos originales para el modelo de evaluación de efectos.]

10voto

Derek Swingley Puntos 3851

Las estimaciones obtenidas de esta manera son el método de los momentos de las estimaciones. En particular, sabemos que $\mbox{E}(X) = \alpha \theta$ $\mbox{Var}[X] = \alpha \theta^2$ para una distribución gamma con forma de parámetros $\alpha$ y el parámetro de escala de $\theta$ (ver wikipedia). La resolución de estas ecuaciones para $\alpha$ $\theta$ rendimientos $\alpha = \mbox{E}[X]^2/\mbox{Var}[X]$$\theta = \mbox{Var}[X] / \mbox{E}[X]$. Ahora sustituye el ejemplo de cálculos para obtener el método de los momentos estimaciones de $\hat{\alpha} = \bar{x}^2 / s^2$$\hat{\theta} = s^2 / \bar{x}$.

Esos no son los Emv (de nuevo, ver wikipedia). No sé qué biblioteca se utiliza para la estimación de los parámetros, pero por lo general, estas bibliotecas rendimiento de la Emv. Y aquellos que podrían ser bastante diferentes que el método de los momentos de las estimaciones.

También, la "suma bajo la curva" no es la cosa correcta de calcular para una variable aleatoria continua -- usted realmente necesita para integrar. E independientemente de lo que enchufe para $\alpha$ $\theta$ (por supuesto, con la restricción de que estos parámetros debe ser > 0, esto siempre debe integrar a 1.

Actualización:

Después de la publicación de los datos, me utiliza R para la obtención de la Emv y el método de los momentos de las estimaciones. Esto produce:

> library(MASS)
> fitdistr(y, dgamma, start=list(shape=1, scale=1))
      shape         scale   
   0.73684030   93.26893829 
 ( 0.02613277) ( 4.59104121)

> mean(y)^2 / var(y)
[1] 0.2468195
> var(y) / mean(y)
[1] 278.3942

Así que, esencialmente, la misma que se obtuvo con Python. Así, las estimaciones son simplemente sólo que diferente el uso de la estimación de máxima verosimilitud versus el método de los momentos.

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X