Propuesto:
$$\int_{0}^{\pi/2}{\mathrm dx\over \sin^2(x)}\ln\left({a+b\sin^2(x)\over a-b\sin^2(x)}\right)=\pi\cdot F(a,b)\tag1$ $ Donde $a\ge b$
Ejemplos:
Where $F(1,1)= \sqrt{2}$, $F(2,1)=\sqrt{2-\sqrt{3}}$, $F(3,1)={1\over \sqrt{3}}(2-\sqrt{2})$, $...$
Cómo evaluamos la forma cerrada para $(1)?$