Tratemos de lograr el resultado requerido, si es posible utilizando enfoques elementales.
Al principio, F(k)=π/2∫0sinkxln(12sinx(1−cosx))dx=π/2∫0sinkxln(sinx2−sin2x4)dx.
k=1
F(1)=π/2∫0sinxln(12sinx(1−cosx))dx=π/2∫0ln(sinx2−sin2x4)d(1−cosx). Por partes: F(1)=(1−cosx)ln(12sinx(1−cosx))|π/20−π/2∫0(1−cosx)12(cosx−cos2x)12sinx(1−cosx)dx =−ln2−π/2∫0cosx−1+2sin2xsinxdx=−ln2−2π/2∫0sinxdx+π/2∫01−cosx1−cos2xsinxdx =−ln2+2cosx|π/20−π/2∫0d(1+cosx)1+cosxdx=−ln2−2−ln(1+cosx)|π/20=−2, F(1)=−2.
k=3
x∫0sin3ydy=x∫0(1−cos2y)sinydy =x∫0(2(1−cosy)−(1−cosy)2)d(1−cosy)=1−cosx∫0(2t−t2)dy=J3(1−cosx), donde J3(t)=t2−13t3. Luego F(3)=π/2∫0sin3xln(12sinx(1−cosx))dx=π/2∫0ln(sinx2−sin2x4)dJ3(1−cosx). Por partes: F(3)=J3(1−cosx)ln(12sinx(1−cosx))|π/20−π/2∫0J3(1−cosx)12(cosx−cos2x)12sinx(1−cosx)dx =−J3(1)ln2−π/2∫0J3(1−cosx)cosx−1+2sin2xsinx(1−cosx)dx =−J3(1)ln2+π/2∫0J3(1−cosx)sinxdx−2π/2∫0J3(1−cosx)1−cosxsinxdx =−J3(1)ln2+π/2∫0J3(1−cosx)(1−cosx)(1+cosx)d(1−cosx)−2π/2∫0J3(1−cosx)1−cosxd(1−cosx) =−J3(1)ln2+1∫0J3(t)t(2−t)dt−2π/2∫tJ3(t)tdt =−J3(1)ln2+121∫0J3(t)tdt+121∫0J3(t)2−tdt−2π/2∫tJ3(t)tdt =−J3(1)ln2+12J3(2)1∫0dt2−t−121∫0J3(t)−J3(2)t−2dt−32π/2∫tJ3(t)tdt =−J3(1)ln2+12J3(2)ln(2−t)|10−121∫0J3(t)−J3(2)t−2dt−32π/2∫tJ3(t)tdt =(−J3(1)+12J3(2))ln2−121∫0J3(t)−J3(2)t−2dt−32π/2∫tJ3(t)tdt =(−23+12⋅43)ln2−1718=−1718 (véase también Wolfram Alfa ), F(3)=−1718.
k=2n+1
De la misma manera, x∫0sin2n+1ydy=x∫0(1−cos2y)nsinydy=1−cosx∫0(2z−z2)ndz=J2n+1(1−cosx), donde J2n+1(t)=t∫0(2z−z2)ndz. Luego F(2n+1)=(−J2n+1(1)+12J2n+1(2))ln2 −121∫0J2n+1(t)−J2n+1(2)t−2dt−321∫0J2n+1(t)tdt. Tengan en cuenta que J2n+1(1)=1∫0(2t−t2)ndt=1∫0(1−(1−t)2)ndt=1∫0(1−t2)ndt=√πΓ(n+1)2Γ(n+3/2) (véase también Wolfram Alfa ), J2n+1(2)=2∫0(2t−t2)ndt=√πΓ(n+1)Γ(n+3/2)=n!⋅2n+1(2n+1)!! (véase también Wolfram Alfa ), por lo tanto F(2n+1)=−121∫0J2n+1(t)−J2n+1(2)t−2dt−321∫0J2n+1(t)tdt, y los integrandos son polinomios con coeficientes racionales. Además, J2n+1(t)−J2n+1(2)=t∫2(2y−y2)ndy=−t∫2((2−y)(2−(2−y))nd(2−y)=−2−t∫0(z(2−z))ndz=−J2n+1(2−t). Eso da F(2n+1)=−121∫0(Rn(2−t)+3Rn(t))dt, donde Rn(t)=1tt∫0(2z−z2)ndz.
Esto permite obtener una forma cerrada para las integrales requeridas (como se muestra a continuación) y explica la forma racional de los resultados.
La fórmula general
Usemos la fórmula binomial de Newton (2z-z^2)^n = z^n(2-z)^n = z^n \sum\limits_ {i=0}^n \genfrac {(}{)}{0}{0}{n}{i}(-1)^i \cdot2 ^{n-i}z^i, entonces R_n(t) = {1 \over t} \int\limits_0 ^t(2z-z^2)^n\, \mathrm dz = {1 \over t} \sum\limits_ {i=0}^n \genfrac {(}{)}{0}{0}{n}{i}(-1)^i \cdot2 ^{n-i} \int\limits_0 ^t z^{n+i}\, \mathrm dz = \sum\limits_ {i=0}^n{(-1)^i \over n+i+1} \genfrac {(}{)}{0}{0}{n}{i} \cdot2 ^{n-i}t^{n+i}, F(2n+1) = - {1 \over2 } \int\limits_0 ^1 \left (R_n(2-t)+3R_n(t) \right )\, \mathrm dt = - {1 \over2 } \sum\limits_ {i=0}^n{(-1)^i \over n+i+1} \genfrac {(}{)}{0}{0}{n}{i} \cdot2 ^{n-i} \int\limits_0 ^1 \left ((2-t)^{n+i}+3t^{n+i} \right )\, \mathrm dt = - {1 \over2 } \sum\limits_ {i=0}^n{(-1)^i \over (n+i+1)^2} \genfrac {(}{)}{0}{0}{n}{i} \cdot2 ^{n-i} \left (-(2-t)^{n+i+1}+3t^{n+i+1} \right ) \biggr |_0^1 = - {1 \over2 } \sum\limits_ {i=0}^n{(-1)^i \over (n+i+1)^2} \genfrac {(}{)}{0}{0}{n}{i} \cdot2 ^{n-i} \left (2+2^{n+i+1} \right ), \boxed { \boxed {F(2n+1) = -4^n \sum\limits_ {i=0}^n{(-1)^i \over (n+i+1)^2} \genfrac {(}{)}{0}{0}{n}{i}(1+2^{-n-i})}}. \tag1
Resultados
Los resultados del cálculo por (1) usando el programa Wolfram Alpha (сliсk a la derecha los símbolos "="):
\mathbf {n=0} \quad F(1)\ \=)) \ -2
\mathbf {n=1} \quad F(3)\ \=)) \ - \dfrac {17}{18}
\mathbf {n=2} \quad F(5)\ \=)) \ - \dfrac {587}{900}
\mathbf {n=3} \quad F(7)\ \=)) \ - \dfrac {629}{1225}
\mathbf {n=4} \quad F(9)\ \=)) \ - \dfrac {342319}{793800}
\mathbf {n=5} \quad F(11)\ \=)) \ - \dfrac {3613679}{38419920}
¡Hecho!