\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove armada]{\displaystyle{#1}}\,}
\newcommand{\llaves}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}
Con \ds{\Lambda > 0}:
\begin{align}
\int_{0}^{\Lambda}\sin\pars{x}\sin\pars{x^{2}}\,\dd x & =
{1 \over 2}\int_{0}^{\Lambda}\cos\pars{x^{2} - x}\,\dd x -
{1 \over 2}\int_{0}^{\Lambda}\cos\pars{x^{2} + x}\,\dd x
\\[5mm] & =
{1 \over 2}\int_{1/2}^{\Lambda + 1/2}\cos\pars{x^{2} - {1 \over 4}}\,\dd x -
{1 \over 2}\int_{-1/2}^{\Lambda - 1/2}\cos\pars{x^{2} - {1 \over 4}}\,\dd x
\\[1cm] & =
{1 \over 2}\int_{1/2}^{\Lambda - 1/2}\cos\pars{x^{2} - {1 \over 4}}\,\dd x +
{1 \over 2}\int_{\Lambda - 1/2}^{\Lambda + 1/2}
\cos\pars{x^{2} - {1 \over 4}}\,\dd x
\\[2mm] & -
{1 \over 2}\int_{-1/2}^{1/2}\cos\pars{x^{2} - {1 \over 4}}\,\dd x -
{1 \over 2}\int_{1/2}^{\Lambda - 1/2}\cos\pars{x^{2} - {1 \over 4}}\,\dd x
\\[1cm] & =
{1 \over 2}\int_{-1/2}^{1/2}\cos\pars{x^{2} - {1 \over 4}}\,\dd x
\\[2mm] & +
\bracks{%
{1 \over 2}\int_{1/2}^{\Lambda + 1/2}\cos\pars{x^{2} - {1 \over 4}}\,\dd x -
{1 \over 2}\int_{1/2}^{\Lambda - 1/2}\cos\pars{x^{2} - {1 \over 4}}\,\dd x}
\end{align}
Como \ds{\Lambda \to \infty}, las dos últimas integrales convergen, ya que puede ser reducido a convergente
Integrales De Fresnel.
\int_{0}^{\infty}\sin\pars{x}\sin\pars{x^{2}}\,\dd x =
\bbx{\int_{0}^{1/2}\cos\pars{x^{2} - {1 \over 4}}\,\dd x}
\quad\mbox{que es claramente}\ convergente.