(a) mostrar que la secuencia de ${a_n} = \sqrt[n]{{{3^n} + {5^n}}}$ es monótona decreciente
Prueba deja ${a_n} = \sqrt[n]{{{3^n} + {5^n}}} = 5{\left[ {{{\left( {\frac{3}{5}} \right)}^n} + 1} \right]^{\frac{1}{n}}}$ luego
${a_k} = 5{\left[ {{{\left( {\frac{3}{5}} \right)}^k} + 1} \right]^{\frac{1}{k}}}$
${a_{k + 1}} = 5{\left[ {{{\left( {\frac{3}{5}} \right)}^{k + 1}} + 1} \right]^{\frac{1}{{k + 1}}}}$
Sabemos que ${\left( {\frac{3}{5}} \right)^k} \geqslant {\left( {\frac{3}{5}} \right)^{k + 1}}$
${\left( {\frac{3}{5}} \right)^k} + 1 \geqslant {\left( {\frac{3}{5}} \right)^{k + 1}} + 1$
${\left[ {{{\left( {\frac{3}{5}} \right)}^k} + 1} \right]^{\frac{1}{{k + 1}}}} \geqslant {\left[ {{{\left( {\frac{3}{5}} \right)}^{k + 1}} + 1} \right]^{\frac{1}{{k + 1}}}}$
${\left[ {{{\left( {\frac{3}{5}} \right)}^k} + 1} \right]^{\frac{1}{k}}} \geqslant {\left[ {{{\left( {\frac{3}{5}} \right)}^k} + 1} \right]^{\frac{1}{{k + 1}}}} \geqslant $ ${\left[ {{{\left( {\frac{3}{5}} \right)}^{k + 1}} + 1} \right]^{\frac{1}{{k + 1}}}}$
$5 {\left [{{{\left ({\frac{3}{5}} \right)}^k} + 1} \right]^{\frac{1}{k}}} \geqslant 5 {\left [{{{\left ({\frac{3}{5}} \right)}^{k + 1}} + 1} \right]^{\frac{1}{{k + 1}}} $
${a_k} \geqslant {a_{k + 1}}$
Así ${a_n} = \sqrt[n]{{{3^n} + {5^n}}} = 5{\left[ {{{\left( {\frac{3}{5}} \right)}^n} + 1} \right]^{\frac{1}{n}}}$ es monótona decreciente.
Lo no verdadero o falso, espero alguien me ayude gracias.