Puede utilizar la serie de Taylor para obtener una aproximación de la orden bajo momentos de una transformada variable aleatoria. Si la distribución es bastante 'apretado' alrededor de la media (en un sentido particular), la aproximación puede ser bastante bueno.
Así, por ejemplo,
$$g(X) = g(\mu) + (X-\mu) g'(\mu) + \frac{(X-\mu)^2}{2} g''(\mu) + \ldots$$
así
\begin{eqnarray}
\text{Var}[g(X)] &=& \text{Var}[g(\mu) + (X-\mu) g'(\mu) + \frac{(X-\mu)^2}{2} g''(\mu) + \ldots]\\
&=& \text{Var}[(X-\mu) g'(\mu) + \frac{(X-\mu)^2}{2} g''(\mu) + \ldots]\\
&=& g'(\mu)^2 \text{Var}[(X-\mu)] + 2g'(\mu)\text{Cov}[(X-\mu),\frac{(X-\mu)^2}{2} g''(\mu) + \ldots] \\& &\quad+ \text{Var}[\frac{(X-\mu)^2}{2} g''(\mu) + \ldots]\\
\end{eqnarray}
a menudo sólo el primer término es tomado
$$\text{Var}[g(X)] \approx g'(\mu)^2 \text{Var}(X)$$
In this case (assuming I didn't make a mistake), with $g(X)=\frac{1}{X}$, $\text{Var}[\frac{1}{X}] \approx \frac{1}{\mu^4} \text{Var}(X)$.
Wikipedia: Taylor expansions for the moments of functions of random variables
---
Some examples to illustrate this. I'll generate two (gamma-distributed) samples in R, one with a 'not-so-tight' distribution about the mean and one a bit tighter.
a <- rgamma(1000,10,1) # mean and variance 10; the mean is not many sds from 0
var(a)
[1] 10.20819 # reasonably close to the population variance
The approximation suggests the variance of $1/a$ should be close to $(1/10)^4 \veces 10 = 0.001$
var(1/a)
[1] 0.00147171
Algebraic calculation has that the actual population variance is $1/648 \aprox 0.00154$
Now for the tighter one:
a <- rgamma(1000,100,10) # should have mean 10 and variance 1
var(a)
[1] 1.069147
The approximation suggests the variance of $1/a$ should be close to $(1/10)^4 \veces 1 = 0.0001$
var(1/a)
[1] 0.0001122586
Algebraic calculation shows that the population variance of the reciprocal is $\frac{10^2}{99^2\los tiempos de 98} \approx 0.000104$.