Yo voy a dar mi humilde idea es mostrar que la integral es $-\dfrac{\pi}{4}$.
Con un cambio de variables ($x=e^u$) tenemos que
$$\mathcal{I}=\int\limits_0^\infty {\frac{{\log x}}{{{{\left( {1 + {x^2}} \right)}^2}}}dx = } \int\limits_{ - \infty }^\infty {\frac{{u{e^u}}}{{{{\left( {1 + {e^{2u}}} \right)}^2}}}du} $$
Podemos escribir esto como
$${\mathcal I} = \int\limits_{ - \infty }^\infty {\frac{{u{e^{ - u}}}}{{{{\left( {{e^{ - u}} + {e^u}} \right)}^2}}}du} $$
Poner a $u=-v$ tenemos que
$${\mathcal I} = \int\limits_{ - \infty }^\infty {\frac{{u{e^{ - u}}}}{{{{\left( {{e^{ - u}} + {e^u}} \right)}^2}}}du} = -\int\limits_{ - \infty }^\infty {\frac{{v{e^v}}}{{{{\left( {{e^{ - v}} + {e^v}} \right)}^2}}}dv} $$
Esto significa que
$$2I = 2\int\limits_0^\infty {\frac{{\log x}}{{{{\left( {1 + {x^2}} \right)}^2}}}dx = } \int\limits_{ - \infty }^\infty {\frac{{u\left( {{e^{ - u}} - {e^u}} \right)}}{{{{\left( {{e^u} + {e^{ - u}}} \right)}^2}}}du} $$
Podemos escribir esto en términos de la hiperbolic funciones, para obtener
$$2I = 2\int\limits_0^\infty {\frac{{\log x}}{{{{\left( {1 + {x^2}} \right)}^2}}}dx = } - \frac{1}{2}\int\limits_{ - \infty }^\infty {\frac{{u\sinh u}}{{\cosh^2 u}}du} $$
Integración por partes da ($(\operatorname{sech} u)'=-\dfrac{{\sinh u}}{{\cosh^2 u}}$)
$$ - \int\limits_{ - \infty }^\infty {\frac{{\sinh udu}}{{{{\cosh }^2}u}}} = \left[ {u\operatorname{sech} u} \right]_{ - \infty }^\infty - \int\limits_{ - \infty }^\infty {\frac{{du}}{{\cosh u}}} $$
Por último, se puede comprobar fácilmente que
$$\int\limits_{ - \infty }^\infty {\frac{{du}}{{\cosh u}}} = \pi $$
y que $u \operatorname{sech} u$ es extraño por lo tanto el primer término en el lado derecho es cero. Así
$$\eqalign{
& 2I = 2\int\limits_0^\infty {\frac{{\log x}}{{{{\left( {1 + {x^2}} \right)}^2}}}dx = } - \frac{\pi }{2} \cr
& Yo = \int\limits_0^\infty {\frac{{\log x}}{{{{\left( {1 + {x^2}} \right)}^2}}}dx = } - \frac{\pi }{4} \cr} $$