El uso de la fórmula de Moivre,
$$\cos(2n+1)x+i\sin(2n+1)x=(\cos x+i\sin x)^{2n+1}=\sum_{r=0}\binom{2n+1}r(\cos x)^{2n+1-r}(i\sin x)^r$$
Igualando las partes reales, $$\cos(2n+1)x$$
$$=(\cos x)^{2n+1}-\binom{2n+1}2(\cos x)^{2n+1-2}(\sin x)^2+\binom{2n+1}r(\cos x)^{2n+1-4}(\sin x)^4+\cdots+\binom{2n+1}{2n-2}(-1)^{n-1}(\cos x)^3(\sin x)^{2n-2}+(-1)^n\cos x\sin^{2n}x$$
$$=(\cos x)^{2n+1}-\binom{2n+1}2(\cos x)^{2n+1-2}(1-\cos^2x)+\binom{2n+1}r(\cos x)^{2n+1-4}(1-\cos^2x)^2+\cdots+\binom{2n+1}{2n-2}(-1)^{n-1}(\cos x)^3(1-\cos^2x)^{n-1}+(-1)^n\cos x(1-\cos^2x)^nx$$
$$\implies\cos(2n+1)x=(\cos x)^{2n+1}\left[1+\binom{2n+1}2+\binom{2n+1}4+\cdots+\binom{2n+1}{2n}\right]+\cdots+\binom{2n+1}{2n}(-1)^n\cos x$$
Ahora $\displaystyle1+\binom{2n+1}2+\binom{2n+1}4+\cdots+\binom{2n+1}{2n}=\sum_{r=0}^n\binom{2n+1}{2r}=\sum_{r=0}^n\binom{2n+1}{2n+1-2r}=\dfrac{(1+1)^{2n+1}}2=2^{2n}$
$$\implies\cos(2n+1)x=2^{2n}(\cos x)^{2n+1}+\cdots+(-1)^n(2n+1)\cos x$$
Ahora si $\cos(2n+1)x=\cos A,(2n+1)x=2m\pi\pm A$ donde $m$ es cualquier entero
y $x=\dfrac{2m\pi\pm A}{2n+1}$ donde $m\equiv0,\pm1,\pm2\cdots,\pm n\pmod{2n+1}$
Así, las raíces de $$2^{2n}(\cos x)^{2n+1}+\cdots+(-1)^n(2n+1)\cos x-\cos A=0\ \ \ \ (1)$$
$\cos\dfrac{2m\pi\pm A}{2n+1}$ donde $m\equiv0,\pm1,\pm2\cdots,\pm n\pmod{2n+1}$
El uso de Vieta de la fórmula, $$\cos\dfrac A{2n+1}\prod_{m=1}^n\cos\dfrac{2m\pi\pm A}{2n+1}=\dfrac{\cos A}{2^{2n}}$$
Si $A=0,$ $$\prod_{m=1}^n\cos^2\dfrac{2m\pi}{2n+1}=\dfrac1{2^{2n}}$$
Ahora $\cos\dfrac{2m\pi}{2n+1}=-\cos\left(\pi-\dfrac{2m\pi}{2n+1}\right)=-\cos\dfrac{(2n+1-2m)\pi}{2n+1}$
$$\implies(-1)^n\prod_{m=0}^{2n}\cos\dfrac{m\pi}{2n+1}=\dfrac1{2^{2n}}$$
Como $\displaystyle\cos\dfrac{(2n+1-m)\pi}{2n+1}=\cdots=-\cos\dfrac{m\pi}{2m+1}$
$\displaystyle\implies(-1)^n\prod_{m=1}^n\cos^2\dfrac{m\pi}{2n+1}(-1)^n=\dfrac1{2^{2n}}\implies\prod_{m=1}^n\cos^2\dfrac{m\pi}{2n+1}=\dfrac1{2^{2n}}$
De nuevo $0\le\dfrac{m\pi}{2n+1}\le\dfrac\pi2\iff0\le2m\le2n+1\iff0\le m\le n$
$\displaystyle\implies\prod_{m=1}^n\cos\dfrac{m\pi}{2n+1}=\dfrac1{2^n}$ $\cos\dfrac{m\pi}{2n+1}>0$ $0<m\le n$