31 votos

Evaluar $\int_0^\infty \frac{\log(1+x^3)}{(1+x^2)^2}dx$ $\int_0^\infty \frac{\log(1+x^4)}{(1+x^2)^2}dx$

Antecedentes: la Evaluación de la $\int_0^\infty \frac{\log(1+x^2)}{(1+x^2)^2}dx$

Podemos probar el uso de los Beta-Función de la identidad que

$$\int_0^\infty \frac{1}{(1+x^2)^\lambda}dx=\sqrt{\pi}\frac{\Gamma \left(\lambda-\frac{1}{2} \right)}{\Gamma(\lambda)} \quad \lambda>\frac{1}{2}$$

Diferenciando la ecuación anterior con respecto a $\lambda$, obtenemos una expresión que implique la Función Digamma $\psi_0(z)$.

$$\int_0^\infty \frac{\log(1+x^2)}{(1+x^2)^\lambda}dx = \sqrt{\pi}\frac{\Gamma \left(\lambda-\frac{1}{2} \right)}{\Gamma(\lambda)} \left(\psi_0(\lambda)-\psi_0 \left( \lambda-\frac{1}{2}\right) \right)$$

Poner a $\lambda=2$, obtenemos

$$\int_0^\infty \frac{\log(1+x^2)}{(1+x^2)^2}dx = -\frac{\pi}{4}+\frac{\pi}{2}\log(2)$$


Pregunta:

Pero, ¿alguien sabe cómo evaluar $\displaystyle \int_0^\infty \frac{\log(1+x^3)}{(1+x^2)^2}dx$$\displaystyle \int_0^\infty \frac{\log(1+x^4)}{(1+x^2)^2}dx$?

Mathematica da los valores

  • $\displaystyle \int_0^\infty \frac{\log(1+x^3)}{(1+x^2)^2}dx = -\frac{G}{6}+\pi \left(-\frac{3}{8}+\frac{1}{8}\log(2)+\frac{1}{3}\log \left(2+\sqrt{3} \right) \right)$

  • $\displaystyle \int_0^\infty \frac{\log(1+x^4)}{(1+x^2)^2}dx = -\frac{\pi}{2}+\frac{\pi \log \left( 6+4\sqrt{2}\right)}{4}$

Aquí, $G$ denota el catalán es Constante.

Inicialmente, mi enfoque era encontrar formas cerradas para

$$\int_0^\infty \frac{1}{(1+x^2)^2(1+x^3)^\lambda}dx \ \ , \int_0^\infty \frac{1}{(1+x^2)^2(1+x^4)^\lambda}dx$$

y luego se diferencian con respecto a $\lambda$ pero no llegar a ser de ninguna ayuda.

Por favor me ayude a probar estos dos resultados.

17voto

Dennis Puntos 9534

La 2ª evaluación se puede obtener a partir de los residuos teorema:

  • El uso de la paridad, escribir la integral como $\displaystyle \frac12\int_{-\infty}^{\infty}\frac{\ln(1+x^4)\,dx}{(1+x^2)^2}$.

  • Interpretar esto como un complejo integral y tire de la integración de contorno, digamos, $i\infty$. El resultado será dado por el residuo en el 2º fin de polo en $x=i$ y las dos integrales del logaritmo de salto (igual a $2\pi i$) durante los cortes de ramas que emanan de $x=e^{i\pi/4}$ $x=e^{3i\pi /4}$ en las direcciones radiales.

  • Para la primera aportación, hemos $$2\pi i \cdot\mathrm{res}_{x=i}\frac{\ln(1+x^4)}{(1+x^2)^2}=\frac{\pi}{2}\left(\ln2 -2\right).$$

  • La integral sobre la rama de corte $(e^{i\pi/4},e^{i\pi/4}\infty)$ es $$2\pi i \int_{e^{i\pi/4}}^{e^{i\pi/4}\infty}\frac{dx}{(1+x^2)^2}=\frac{\pi i}{2}\left(\pi-\sqrt{2}-2\arctan e^{i\pi/4}\right),$$ y, del mismo modo, para la segunda rama cortada $(e^{3i\pi/4},e^{3i\pi/4}\infty)$ encontramos $$2\pi i \int_{e^{3i\pi/4}}^{e^{3i\pi/4}\infty}\frac{dx}{(1+x^2)^2}=\frac{\pi i}{2}\left(\sqrt{2}-\pi-2\arctan e^{3i\pi/4}\right).$$

  • La combinación de todo, uno obtiene la respuesta: \begin{align} \frac12\left\{\frac{\pi}{2}\left(\ln2 -2\right)+\pi\, \mathrm{arccoth}\sqrt{2}\right\}= -\frac{\pi}{2}+\frac{\pi}{4}\ln(6+4\sqrt{2}). \end{align}

15voto

Ron Gordon Puntos 96158

Podemos atacar a las otras integral

$$I = \int_0^{\infty} dx \frac{\log{(1+x^3)}}{(1+x^2)^2}$$

en una manera similar a lo que @O. L. esbozado en su respuesta para el otro caso, pero con un contorno diferente. A saber, considerar

$$\oint_C dz \frac{\log{(1+z^3)} \log{z}}{(1+z^2)^2}$$

donde $C$ es el siguiente contorno

3contour

Este es un ojo de la cerradura de contorno sobre el eje real positivo, pero con orificios adicionales acerca de los puntos de ramificación en $z=e^{i \pi/3}$, $z=-1$, y $z=e^{i 5 \pi/3}$. Hay polos de orden $2$$z=\pm i$.

Voy a describir el procedimiento para la evaluación. La integral sobre los arcos circulares, grandes y pequeños, ir a cero, como los radios de ir a $\infty$$0$, respectivamente. Cada uno de los puntos de ramificación introduce un salto de $i 2 \pi$ debido a que el logaritmo en el integrando. Por el teorema de los residuos, hemos

$$-i 2 \pi \int_0^{\infty} dx \frac{\log{(1+x^3)}}{(1+x^2)^2} - i 2 \pi \int_{e^{i \pi/3}}^{\infty e^{i \pi/3}} dt \frac{\log{t}}{(1+t^2)^2} \\ - i 2 \pi \int_{e^{i \pi}}^{\infty e^{i \pi}} dt \frac{\log{t}}{(1+t^2)^2} - i 2 \pi \int_{e^{i 5 \pi/3}}^{\infty e^{i 5 \pi/3}} dt \frac{\log{t}}{(1+t^2)^2} = \\ i 2 \pi \sum_{\pm} \frac{d}{dz} \left[\frac{\log{(1+z^3)} \log{z}}{(z\pm i)^2} \right]_{z=\pm i} $$

Sin entrar demasiado en detalles, voy a ilustrar cómo las integrales se hace mediante la evaluación de uno de ellos. Considere la posibilidad de

$$\int_{e^{i \pi}}^{\infty e^{i \pi}} dt \frac{\log{t}}{(1+t^2)^2} = -\int_1^{\infty} dy \frac{\log{y}+i \pi}{(1+y^2)^2}$$

Ahora,

$$\int_1^{\infty} \frac{dy}{(1+y^2)^2} = \int_{\pi/4}^{\pi/2} d\theta \cos^2{\theta} = \frac{\pi}{8}-\frac14$$

$$\begin{align}\int_1^{\infty} dy\frac{\log{y}}{(1+y^2)^2} &= -\int_0^1 du \frac{u^2 \log{u}}{(1+u^2)^2}\\ &= -\sum_{k=0}^{\infty} (-1)^k (k+1) \int_0^1 u^{2 k+2} \log{u} \\ &= \sum_{k=0}^{\infty} (-1)^k \frac{k+1}{(2 k+3)^2} \\ &= \frac{G}{2} - \frac{\pi}{8}\end{align}$$

así que

$$\int_{e^{i \pi}}^{\infty e^{i \pi}} dt \frac{\log{t}}{(1+t^2)^2} = - \left ( \frac{G}{2} - \frac{\pi}{8} \right ) - i \pi \left ( \frac{\pi}{8}-\frac14\right ) $$

A lo largo de líneas similares,

$$\int_{e^{i \pi/3}}^{\infty e^{i \pi/3}} dt \frac{\log{t}}{(1+t^2)^2} = \frac{G}{3}-\frac{\pi }{8}+\frac{1}{12} \pi \log \left(2+\sqrt{3}\right)+i \left(\frac{1}{4} \log \left(2+\sqrt{3}\right)-\frac{\pi }{6}\right)$$

$$\int_{e^{i 5 \pi/3}}^{\infty e^{i 5 \pi/3}} dt \frac{\log{t}}{(1+t^2)^2} = \frac{G}{3}-\frac{\pi }{8}-\frac{5}{12} \pi \log \left(2+\sqrt{3}\right)+i \left(-\frac{5 \pi }{6}+\frac{\pi ^2}{4}-\frac{1}{4} \log \left(2+\sqrt{3}\right)\right)$$

La combinación de las integrales, tengo

$$\frac{G}{6} -\frac{\pi}{8}-\frac{\pi}{3} \log{(2+\sqrt{3})} + i \left [-\frac{3 \pi}{4} + \frac{\pi^2}{8}\right ] $$

La suma de los residuos en el lado derecho es relativamente simple para evaluar; me

$$\sum_{\pm} \frac{d}{dz} \left[\frac{\log{(1+z^3)} \log{z}}{(z\pm i)^2} \right]_{z=\pm i} = \frac{\pi}{2}-\frac{\pi}{8}\log (2)+i \left(\frac{3 \pi }{4}-\frac{\pi ^2}{8}\right)$$

La integral que buscamos es entonces el negativo de la suma de la combinación de las integrales y la suma de los residuos, lo que nos da

$$\int_0^{\infty} dx \frac{\log{(1+x^3)}}{(1+x^2)^2} = -\frac{G}{6} - \frac{3\pi}{8} + \frac{\pi}{8} \log{2} + \frac{\pi}{3} \log{(2+\sqrt{3})} \approx 0.320555$$

lo cual está de acuerdo con Mathematica. Nota cómo el imaginario partes fortuitamente cancelado.

Se debe entender que la técnica puede ser aplicada a la otra integral. Como O. L. ha demostrado, sin embargo, uno puede aprovechar la simetría y el uso de una menor computacionalmente exigente técnica para ese caso en particular.

8voto

schooner Puntos 1602

Espero que no sea demasiado tarde. Definir \begin{eqnarray} I(a)=\int_0^\infty\frac{\log(1+ax^4)}{(1+x^2)^2}dx. \end{eqnarray} Entonces \begin{eqnarray} I'(a)&=&\int_0^\infty \frac{x^4}{(1+ax^4)(1+x^2)^2}dx\\ &=&\frac{1}{(1+a)^2}\int_0^\infty\left(-\frac{2}{1+x^2}+\frac{1+a}{(1+x^2)^2}+\frac{1-a+2ax^2}{1+a x^4}\right)dx\\ &=&\frac{1}{(1+a)^2}\left(-\pi+\frac{1}{4}(1+a)\pi+\frac{(1-a)\pi}{2\sqrt2a^{1/4}}+\frac{\pi a^{1/4}}{\sqrt2}\right)\\ &=&\frac{1}{4(1+a)^2}\left(a-3+\frac{\sqrt2(1-a)}{a^{1/4}}+2\sqrt2 a^{1/4}\right). \end{eqnarray} y por lo tanto \begin{eqnarray} I(1)&=&\int_0^1\frac{1}{4(1+a)^2}\left(a-3+\frac{\sqrt2(1-a)}{a^{1/4}}+2\sqrt2 a^{1/4}\right)da\\ &=&-\frac{\pi}{2}+\frac{1}{4}\log(6+4\sqrt2). \end{eqnarray} Para la otra integral, podemos hacer la misma cosa a definir $$ J(a)=\int_0^\infty\frac{\log(1+ax^3)}{(1+x^2)^2}dx. $$ El cálculo es similar y más complicada, y aquí omito los detalles.

7voto

Thierry Lam Puntos 1079

Otro enfoque para la evaluación de la segunda integral usando el contorno de la integración, lo que evita tener que deforman el contorno alrededor de los cortes de ramas es considerar $$ \displaystyle f(z) = \frac{\log(z+ e^{i \pi /4})}{(1+z^{2})^{2}}$$ and integrate around a contour that consists of the line segment $[-R,R]$ and the upper half of $|z|=R$.

A continuación, dejando $R \to \infty$,

$$ \begin{align} &\int_{-\infty}^{0} \frac{\log(x+e^{i \pi /4})}{(1+x^{2})^{2}} \ dx + \int_{0}^{\infty} \frac{\log(x+e^{i \pi /4})}{(1+x^{2})^{2}} \ dx \\ &= 2 \pi i \ \text{Res}[f(z),i] \\ &= 2 \pi i \lim_{z \to i} \frac{d}{dz} \frac{\log(z+e^{i \pi /4})}{(z+i)^{2}} \\ &=2 \pi i \lim_{z \to i} \left(\frac{1}{(z+e^{i \pi /4})(z+i)^{2}} - \frac{2 \log(z+e^{i \pi /4})}{(z+i)^{3}} \right) \\ &= 2 \pi i \left(- \frac{1}{4} \frac{\sqrt{2}}{1+i(1+\sqrt{2})} + \frac{\log|i+e^{i \pi /4}| + i \arg (i +e^{i \pi/4}) }{4i}\right)\\ &= 2 \pi i \left(\frac{1-\sqrt{2}+i}{8} + \frac{\frac{1}{2} \log (2+\sqrt{2})+ i \frac{3 \pi}{8}}{4i} \right) \\ &= \frac{\pi}{4} \Big(\log(2+\sqrt{2})-1 \Big) + \frac{i\pi}{4} \left(1-\sqrt{2}+\frac{3 \pi}{4} \right) . \end{align}$$

Pero aviso que $$ \begin{align} &\text{Re} \left( \int_{-\infty}^{0} \frac{\log(z+e^{i \pi /4})}{(1+x^{2})^{2}} \ dx + \int_{0}^{\infty} \frac{\log(z+e^{i \pi /4})}{(1+x^{2})^{2}} \ dx \right) \\ &= \text{Re} \left(\int_{0}^{\infty} \frac{\log(-u + e^{i \pi /4})}{(1+u^{2})^{2}} \ du + \int_{0}^{\infty} \frac{\log(z+e^{i \pi /4})}{(1+x^{2})^{2}} \ dx \right) \\ &= \int_{0}^{\infty} \frac{\log|-u + e^{i \pi /4}|}{(1+u^{2})^{2}} \ du + \int_{0}^{\infty} \frac{\log |x+e^{i \pi /4}|}{(1+x^{2})^{2}} \ dx\\ &= \int_{0}^{\infty} \frac{\frac{1}{2} \log(x^{2}-\sqrt{2}x+1) + \frac{1}{2} \log(x^{2}+\sqrt{2}x+1)}{(1+x^{2})^{2}} \ dx \\ &= \frac{1}{2} \int_{0}^{\infty} \frac{\log(1+x^{4})}{(1+x^{2})^{2}} \ dx. \end{align}$$

Por lo tanto,

$$ \begin{align} \int_{0}^{\infty} \frac{\log(1+x^{4})}{(1+x^{2})^{2}} \ dx &= \frac{\pi}{2} \Big(\log(2+\sqrt{2}) -1 \Big) \\ &= \frac{\pi}{2} \Big(\frac{1}{2} \log \big((2+\sqrt{2})^{2} \big) -1 \Big) \\ &= \frac{\pi}{2} \Big(\frac{\log(6+4\sqrt{2})}{2} -1\Big) \\ &= - \frac{\pi}{2} + \frac{\pi \log(6+4\sqrt{2})}{4}. \end{align}$$

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X