En definitiva, no es nada cerca tan agradable como es el caso racional. Si estamos ante un número irracional $\alpha$, entonces $$x^\alpha:=\underset{r\to\alpha}{\lim_{r\in\Bbb Q}}x^r,$$ so long as this limit is defined (for example, it doesn't work when $x$ is negative, and it doesn't work when $x=0$ and $\alpha$ es negativo).
Alternativamente, es a veces más beneficiosos definirlo como $$x^\alpha:=e^{\alpha\ln x}.$$ These are equivalent definitions for $ x > 0$. We can even do a bit better and define $$x^\alpha:=\lim_{t\to x^+}e^{\alpha\ln t}.$$ That definition works precisely when the original definition does--namely, whenever $ x > 0$, and whenever $x=0$ and $\alpha > 0 $. Of course, both of the latter two definitions do require some independent definition of $e ^ w $, such as $% $ $e^w:=\lim_{n\to\infty}\left(1+\frac wn\right)^n.$