Supongamos que existe un punto de inflexión pf. A continuación, hay un barrio (a,b) p tal que f″ cambia de signo en el intervalo de [a, b] exactamente en el punto de p. Ahora considere la línea que pasa a través de (p, f(p)) y tiene pendiente m\neq f'(p) . Elegimos m>f'(p) si f'' es positiva a la derecha de p lo contrario elegimos m<f'(p) . La ecuación de la línea deseada es y=f(p) +m(x-p) \tag{1} and the points of intersection with curve y=f(x) (apart from (p, f(p)) ) are given by solutions to f(x) = f(p) +m(x-p)\tag{2} For values of m near f'(p) this will have two solutions s, t such that s<p<t and hence the line will intersect y=f(x) in two points (s, f(s)) and (t, f(t)) such that \leq s<p<t\leq b. Now the equation f'(x) =\frac{f(s) - f(t)} {s-t} has two roots one in (s, p) and another in (p, t) because of the equation \frac{f(s) - f(t)} {s-t} =\frac{f(s) - f(p)} {s - p} =\frac{f(p) - f(t)} {p-t} tenemos Así el deseado contradicción.
La ecuación de (2) es más fácil de resolver, expresándola como m=\frac{f(x)-f(p)}{x-p}\tag{3} And consider the case when m>f'(p) ie when f"(x) is positive in (p, b] and consider the function g defined by g(x) =\frac{f(x) - f(p)} {x-p}, g(p) =f'(p) so that g is continuous in [a, b] and g(x) >g(p) for all x\in[a, b], x\neq p (because f" is positive in (p, b) and negative in (a, p) ). Let M, M' be the maximum values of g in intervals [a, p] and [p, b] respectively. Then both M, M' are greater than g(p) =f'(p) . If we choose m such that f'(p) =g(p) <m<\min(M, M') then via intermediate value theorem for continuous g we can ensure that equation (3) has a root in (a, p) and a root in (p, b) .