Supongamos que existe un punto de inflexión $p$$f$. A continuación, hay un barrio $(a, b) $ $p$ tal que $f''$ cambia de signo en el intervalo de $[a, b] $ exactamente en el punto de $p$. Ahora considere la línea que pasa a través de $(p, f(p)) $ y tiene pendiente $m\neq f'(p) $. Elegimos $m>f'(p) $ si $f''$ es positiva a la derecha de $p$ lo contrario elegimos $m<f'(p) $. La ecuación de la línea deseada es $$y=f(p) +m(x-p) \tag{1}$$ and the points of intersection with curve $y=f(x) $ (apart from $(p, f(p)) $) are given by solutions to $$f(x) = f(p) +m(x-p)\tag{2}$$ For values of $m$ near $f'(p) $ this will have two solutions $s, t$ such that $s<p<t$ and hence the line will intersect $y=f(x) $ in two points $(s, f(s)) $ and $(t, f(t)) $ such that $\leq s<p<t\leq b$. Now the equation $$f'(x) =\frac{f(s) - f(t)} {s-t}$$ has two roots one in $(s, p)$ and another in $(p, t) $ because of the equation $$\frac{f(s) - f(t)} {s-t} =\frac{f(s) - f(p)} {s - p} =\frac{f(p) - f(t)} {p-t}$$ tenemos Así el deseado contradicción.
La ecuación de $(2)$ es más fácil de resolver, expresándola como $$m=\frac{f(x)-f(p)}{x-p}\tag{3}$$ And consider the case when $m>f'(p) $ ie when $f"(x) $ is positive in $(p, b] $ and consider the function $g$ defined by $$g(x) =\frac{f(x) - f(p)} {x-p}, g(p) =f'(p)$$ so that $g$ is continuous in $[a, b] $ and $g(x) >g(p) $ for all $x\in[a, b], x\neq p$ (because $f"$ is positive in $(p, b) $ and negative in $(a, p) $). Let $M, M'$ be the maximum values of $g$ in intervals $[a, p] $ and $[p, b] $ respectively. Then both $M, M'$ are greater than $g(p) =f'(p) $. If we choose $m$ such that $$f'(p) =g(p) <m<\min(M, M') $$ then via intermediate value theorem for continuous $g$ we can ensure that equation $(3)$ has a root in $(a, p) $ and a root in $(p, b) $.