Estoy trabajando con un conjunto de bienes con valores de ecuaciones diferenciales ordinarias basado en el de Lotka-Volterra de la competencia ecuaciones:
˙a1=a1(1−a1−2a2)˙a2=a2(1−a2−(1−1/ν)a1)
where a1,2∈[0,1] and ν≥1. I would like to obtain a closed form (or analytical) solution for the time, τ, it takes for this system to transit between two regions in state space. Specifically, I would like to solve for τ given a1(0)=δ and a2(τ)=δ, where 1/2<δ<1. This is along the manifold between two fixed points: the unstable manifold of a saddle at (a1,a2)=(1,0) and a stable equilibrium at (a1,a2)=(0,1).
There is a solution for ν=1 (τ=−2ln(1/δ−1)), but I have been unable to find a solution for the more general case in terms of ν (or even for any particular value of ν>1, including the limiting case of ν→∞). This paper seems to imply that the equations above are not fully integrable except when ν=1 (see Eq. 25'), i.e, when the second equation is not a function of a1. However, I'm not actually interested in solving this system for all time over the full state space. Question: Are there any methods to solve or obtain a reliable approximation for τ=f(ν,δ) para este sistema sólo dentro de mi región de interés?
Intentos:
Además de papel y lápiz, he utilizado de Matlab
dsolve
y MathematicaDSolve
junto con las hipótesis para tratar de resolver las Odas para el especificado las condiciones de contorno. Yo era incapaz de resolver el sistema mediante estos, pero podría no ser la manera de transformar o romper el sistema que facilitaría una solución?He intentado usar bajo orden de potencia de la serie, por ejemplo, en este trabajo, acerca de cada uno de los equilibrios para obtener las funciones de tiempo que se invierte para resolver por τ. Este fue lejos de la realidad, ya que sólo un par de series de términos pueden ser utilizados.
He tratado de esquemas basados en la simulación de la educación a distancia y ajuste de los tiempos de tránsito a una función de ν. Esto requiere encontrar las condiciones iniciales que se encuentran en el colector. ¿Cómo puede ser hecho de forma fiable como una función de la νδ? Y métodos de ajuste puede ser adaptado a la más general de las formas de la ecuación anterior (es decir, la reutilización de la misma ajuste de los coeficientes y sin ajuste de alta tridimensional de superficies)? Estoy más interesado en no ajustable-base de las soluciones, pero si usted puede demostrar algo que funciona bien, yo estaría feliz de verlo.
Actualización 1 – Mar. 17, 2014:
El nullclines del sistema y el determinante Jacobiano (relativa a la curvatura) puede usarse para obtener el estimado inicial y final de las condiciones. La solución para que las raíces de det como una función de la a_1 y la escala de forma adecuada, se obtiene
a_2(t) = \tfrac{1}{2} \left( 2 - a_1(t) - \sqrt{a_1(t) \left( \tfrac{2}{\nu} \left( a_1(t)-1 \right) + 2 - a_1(t) \right)} \right)
For a_1(0) = 1-\delta, this expression appears to provide a good approximation for a_2(0) on the stable manifold (attracting contour) in question. It is less reliable for obtaining an estimate for a_1(\tau). Perhaps this is due to the Jacobian evaluated at (a_1,a_2) = (0,1) being a defective matrix with only one eigenvector.
Update 2 – Mar. 25, 2014 – (post bounty):
The equation from @JJacquelin's answer immediately after the transformation to polar coordinates can be simplified and integrated definitely (I used Mathematica 9) with respect to the bounds at times 0 and \tau:
\begin{align} \int_0^\tau{dt} & = \int_{\theta_0}^{\theta_{\tau}}{\frac{\sin^3\theta + \cos^3\theta + \left(2\cos\theta + \left(1-\tfrac{1}{\nu}\right)\sin\theta\right)\sin\theta\cos\theta}{\left(\tfrac{1}{\nu} \cos \theta + \sin \theta\right)\sin\theta\cos \theta}d\theta} + \int_{\rho_0}^{\rho_{\tau}}{\frac{1}{\rho}d\rho} \\ \tau & = \int_{\theta_0}^{\theta_{\tau}}{\frac{1-\tfrac{1}{\nu}+\left(2+\cot\theta\right)\cot\theta+\tan\theta}{1+\tfrac{1}{\nu}\cot\theta}d\theta} + \ln\left(\frac{\rho_{\tau}}{\rho_0}\right) \\ & = \frac{\nu^2}{1+\nu^2}\left(\ln\left(\frac{\cos(\theta_0)}{\cos(\theta_{\tau})}\right) +2\ln\left(\frac{\cos\theta_{\tau}+\nu\sin\theta_{\tau}}{cos\theta_0+\nu\sin\theta_0}\right)+\frac{1}{\nu^2}\ln\left(\frac{\cos\theta_{\tau}\left(1+\nu\tan\theta_{\tau}\right)^2}{\cos\theta_0\left(1+\nu\tan\theta_0\right)^2}\right)\right) + \nu\ln\left(\frac{\nu+\cot\theta_0}{\nu+\cot\theta_{\tau}}\right) + \ln\left(\frac{\rho_{\tau}}{\rho_0}\right) \end{align}
Transforming back from polar to Cartesian coordinates further simplifies the expression:
\tau = \ln\left(\frac{a_1(0)}{a_1(\tau)}\right) + 2\ln\left(\frac{a_1(\tau)+\nu a_2(\tau)}{a_1(0)+\nu a_2(0)}\right) + \nu\ln\left(\frac{a_2(\tau)\left(a_1(0)+\nu a_2(0)\right)}{a_2(0)\left(a_1(\tau)+\nu a_2(\tau)\right)}\right)
Here is some "simple" Matlab code that demonstrates this. Also in the code is an ODE-based method that uses ode45
's event detection. This accurately finds the time \tau by integrating along the manifold in question and terminating when the solution satisfies a condition. It's simple and fast for this basic case. However, recall that this system is a simplified version of a more general one in which the time scaling of the vector field can vary and even be different in each of the two dimensions. This could lead to long integration times if the scaling cannot be factored. I'm hoping that the analytical solution given here can be generalized.
The analytic solution-based part of my Matlab code underestimates \tau (except for \nu close to 1 when it slightly overestimates it). The source of almost all of the error is due to the estimate of a_1(\tau) (af1
en el código). Otra cosa es que estoy buscando.