$$ \begin{cases}
(x - 1)^2 + (y + 1)^2 = 25 \\
(x + 5)^2 + (y + 9)^2 = 25 \\
y = -\frac{3}{4}x - \frac{13}{2}
\end {cases} \ Longleftrightarrow $$
$$ \begin{cases}
(x - 1)^2 + \left(\left(-\frac{3}{4}x - \frac{13}{2}\right) + 1\right)^2 = 25 \\
(x + 5)^2 + \left(\left(-\frac{3}{4}x - \frac{13}{2}\right) + 9\right)^2 = 25 \\
y = -\frac{3}{4}x - \frac{13}{2}
\end {cases} \ Longleftrightarrow $$
$$ \begin{cases}
\frac{25}{16}\left(x^2+4x+20\right) = 25 \\
\frac{25}{16}\left(x^2+4x+20\right) = 25 \\
y = -\frac{3}{4}x - \frac{13}{2}
\end {cases} \ Longleftrightarrow $$
$$ \begin{cases}
x^2+4x+20 = 16 \\
x^2+4x+20 = 16 \\
y = -\frac{3}{4}x - \frac{13}{2}
\end {cases} \ Longleftrightarrow $$
$$ \begin{cases}
x^2+4x+4 = 0 \\
x^2+4x+4 = 0 \\
y = -\frac{3}{4}x - \frac{13}{2}
\end {cases} \ Longleftrightarrow $$
$$ \begin{cases}
(x+2)^2 = 0 \\
(x+2)^2 = 0 \\
y = -\frac{3}{4}x - \frac{13}{2}
\end {cases} \ Longleftrightarrow $$
$$ \begin{cases}
x=-2 \\
x=-2 \\
y = -\frac{3}{4}x - \frac{13}{2}
\end {cases} \ Longleftrightarrow $$
$$ \begin{cases}
x=-2 \\
x=-2 \\
y = -\frac{3}{4}(-2) - \frac{13}{2}
\end {cases} \ Longleftrightarrow $$
$$ \begin{cases}
x=-2 \\
x=-2 \\
y = -5
\end {cases} \ Longleftrightarrow $$
$$ \begin{cases}
x=-2 \\
y = -5
\end {casos} $$