Directamente por identidad de Sophie Germain o:
x4+1=x4+2x2+1−2x2=(x2+1)2−(√2x)2=(x2−√2x+1)(x2+√2x+1)
Después de dividir la fracción inicial obtenemos:
∫1x4+1 dx=∫x2√2+12x2+√2x+1 dx+∫−x2√2+12x2−√2x+1 dx=
√28∫2x+2√2x2+√2x+1dx−√28∫2x−2√2x2−√2x+1dx=
√28∫2x+√2x2+√2x+1dx+14∫1x2+√2x+1dx−√28∫2x−√2x2−√2x+1dx+14∫1x2−√2x+1dx=
√28(∫2x+√2x2+√2x+1dx−∫2x−√2x2−√2x+1dx)+
√24(∫√2(√2x+1)2+1dx+∫√2(√2x−1)2+1dx)=
√28(ln(x2+√2x+1)−ln(x2−√2x+1))+√24(arctan(√2x+1)+arctan(√2x−1))+C
=√28ln(x2+x√2+1)(x2−x√2+1)+√24arctanx√21−x2+C.
Q.E.D.