Ser descuidado cuando se me antoja:
$\begin{array}\\
\bigg(\int_0^1[bx+a(1-x)]^tdx\bigg)^{1/t}
&=\bigg(\int_0^1[a+x(b-a)]^tdx\bigg)^{1/t}\\
&=\bigg(\int_0^1[a+cx]^tdx\bigg)^{1/t}
\qquad\text{where }c = b-a > 0\\
&=\bigg(\frac1{c}\int_a^bu^tdu\bigg)^{1/t}
\qquad u = a+cx, dx = du/c\\
&=\bigg(\frac1{c}\frac{b^{t+1}-a^{t+1}}{t+1}\bigg)^{1/t}
\qquad\text{as user42912 got}\\
&\approx\bigg(\frac1{c}\frac{b^{1+1/n}-a^{1+1/n}}{1+1/n}\bigg)^{n}
\qquad t = 1/n\\
&=\bigg(\frac1{c}\frac{b\,b^{1/n}-a\,a^{1/n}}{1+1/n}\bigg)^{n}\\
&\approx\bigg(\frac1{c}\frac{b(1+\ln b/n)-a(1+\ln a/n)}{1+1/n}\bigg)^{n}\\
&\approx\bigg(\frac1{c}\frac{b-a+(b\ln b-a\ln a)/n}{1+1/n}\bigg)^{n}\\
&\approx\bigg(\frac{b-a}{c(1+1/n)}+\frac1{c}\frac{(b\ln b-a\ln a)/n}{1+1/n}\bigg)^{n}\\
&=\bigg(\frac{n}{n+1}+\frac1{c}\frac{b\ln b-a\ln a}{n+1}\bigg)^{n}\\
&=\bigg(1-\frac1{n+1}+\frac1{c}\frac{b\ln b-a\ln a}{n+1}\bigg)^{n}\\
&=\bigg(1+\frac1{c}\frac{b\ln b-a\ln a-c}{n+1}\bigg)^{n}\\
&\approx\exp\bigg(\frac{b\ln b-a\ln a-c}{b-a}\bigg)
\qquad\text{since }(1+x/n)^n \approx e^x\\
&\approx\exp\bigg(\frac{b\ln b-a\ln a}{b-a}-1\bigg)\\
&=\frac1{e}\bigg(\frac{b^b}{a^a}\bigg)^{\frac1{b-a}}
\end{matriz} $
Y eso es lo que me sale.
Como un cheque, si $a=0$ $b=1$, la expresión es
$\begin{array}\\
\left(\int_0^1 x^t dt\right)^{1/t}
&=\left(\frac{x^{t+1}}{t+1}|_0^1\right)^{1/t}\\
&=\left(\frac{1}{t+1}\right)^{1/t}\\
&\to \frac1{e}
\qquad\text{since } (1+t)^{1/t} \to e\\
\end{matriz} $