Necesito a alguien a encontrar un error en mi soliution o tal vez a solf es mucho más fácil... tengo una suma $$1+\frac{1}{4\cdot2^{4}}+\frac{1}{7\cdot2^{7}}+\frac{1}{10\cdot2^{10}}+\cdots$$ y necesidad de la evaluación. Así que aquí está mi soliution: $$S(x)=1+\frac{x^{4}}{4\cdot2^{4}}+\frac{x^{7}}{7\cdot2^{7}}+\frac{x^{10}}{10\cdot2^{10}}+\cdots=1+\sum_{n=1}^\infty \frac{x^{3n+1}}{(3n+1)\cdot2^{3n+1}}=1+S_1(x)$$ $$(S_1(x))_x'=\left(\sum_{n=1}^\infty \frac{x^{3n+1}}{(3n+1)\cdot2^{3n+1}}\right)_x'=\sum_{n=1}^\infty \frac{x^{3n}}{2^{3n+1}}=\frac{1}{x}\sum_{n=1}^\infty \left(\frac{x}{2}\right)^{3n+1}$$ Ahora echemos $\frac{x}{2}=y$, luego $$S_2(y)=\sum_{n=1}^\infty y^{3n+1}=y^4+y^7+y^{10}+\cdots=\frac{y^4}{1+y^3},|y|\le1$$ $$\left(S_1(y)\right)'=\frac{1}{2y}\cdot\frac{y^4}{1-y^3}=\frac{1}{2}\cdot\frac{y^3}{1-y^3}$$ $$S_1(y)=\frac{1}{2}\int\frac{y^3}{1-y^3}dy=\frac{1}{2}\int\left(-1+\frac{1}{1-y^3}\right)dy=-\frac{1}{2}y+\frac{\sqrt{3}}{6}\arctan\left(\frac{2\left(y+\frac{1}{2}\right)}{\sqrt{3}}\right)+\frac{1}{12}\ln\left|\left(y+\frac{1}{2}\right)^2+\frac{3}{4}\right|-\frac{1}{6}\ln\lvert y-1\rvert+C$$
$$S_1(x)=-\frac{1}{4}x+\frac{\sqrt{3}}{6}\arctan\left(\frac{x+1}{\sqrt{3}}\right)+\frac{1}{12}\ln\left|\left(\frac{x}{2}+\frac{1}{2}\right)^2+\frac{3}{4}\right|-\frac{1}{6}\ln\left|\frac{x}{2}-1\right|+C$$ $$S_1(0)=0, C=-\frac{\sqrt{3}\pi}{36}$$ $$S(x)=-\frac{1}{4}x+\frac{\sqrt{3}}{6}\arctan\left(\frac{x+1}{\sqrt{3}}\right)+\frac{1}{12}\ln\left|\left(\frac{x}{2}+\frac{1}{2}\right)^2+\frac{3}{4}\right|-\frac{1}{6}\ln\left|\frac{x}{2}-1\right|-\frac{\sqrt{3}\pi}{36}+1$$ $$S(1)=\frac{3}{4}+\frac{\sqrt{3}}{3}\arctan\left(\frac{2\sqrt{3}}{3}\right)+\frac{1}{6}\ln(7)-\frac{\sqrt{3}\pi}{36}$$ Escribiendo esto por alrededor de 2 horas me lo merezco extra de 50 puntos o, al menos, buenas respuestas... ja, Ja, gracias!