El trilogarithm tiene la primitiva,
$$\int\operatorname{Li}_{3}{\left(x\right)}\,\mathrm{d}x=x\operatorname{Li}_{3}{\left(x\right)}-x\operatorname{Li}_{2}{\left(x\right)}+x-x\ln{\left(1-x\right)}+\ln{\left(1-x\right)}+\color{grey}{constant}.$$
Integración por partes, encontramos después de la integración de todos los términos con antiderivatives simple:
$$\begin{align}
\int_{0}^{1}\operatorname{Li}_{3}^2{\left(x\right)}\,\mathrm{d}x
&=\left[\left(x\operatorname{Li}_{3}{\left(x\right)}-x\operatorname{Li}_{2}{\left(x\right)}+x-x\ln{\left(1-x\right)}+\ln{\left(1-x\right)}\right)\operatorname{Li}_{3}{\left(x\right)}\right]_{0}^{1}\\
&~~~~~ -\int_{0}^{1}\left(x\operatorname{Li}_{3}{\left(x\right)}-x\operatorname{Li}_{2}{\left(x\right)}+x-x\ln{\left(1-x\right)}+\ln{\left(1-x\right)}\right)\frac{\operatorname{Li}_{2}{\left(x\right)}}{x}\,\mathrm{d}x\\
&=\zeta{(3)}-\zeta{(2)}\zeta{(3)}+\zeta{(3)}^2-\int_{0}^{1}\operatorname{Li}_{3}{\left(x\right)}\operatorname{Li}_{2}{\left(x\right)}\,\mathrm{d}x+\int_{0}^{1}\operatorname{Li}_{2}^2{\left(x\right)}\,\mathrm{d}x\\
&~~~~ -\int_{0}^{1}\operatorname{Li}_{2}{\left(x\right)}\,\mathrm{d}x+\int_{0}^{1}\ln{\left(1-x\right)}\operatorname{Li}_{2}{\left(x\right)}\,\mathrm{d}x-\int_{0}^{1}\frac{\ln{\left(1-x\right)}\operatorname{Li}_{2}{\left(x\right)}}{x}\,\mathrm{d}x\\
&=4-2\zeta{(2)}-\zeta{(3)}+\frac54\zeta{(4)}-\zeta{(2)}\zeta{(3)}+\zeta{(3)}^2\\
&~~~~ +\int_{0}^{1}\operatorname{Li}_{2}^2{\left(x\right)}\,\mathrm{d}x-\int_{0}^{1}\operatorname{Li}_{3}{\left(x\right)}\operatorname{Li}_{2}{\left(x\right)}\,\mathrm{d}x.\\
\end {Alinee el} $$
Para los restantes dos integrales, puede sustituir los valores registrados en el libro que usted citó.