$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
Tenga en cuenta que $\ds{\left.\int_{-a}^{a}\int_{-a}^{a}{\root{x^{2} + y^{2}} \over 4a^{2}} \,\dd x\,\dd y\,\right\vert_{\ a\ >\ 0} = a\int_{0}^{1}\int_{0}^{1}\root{x^{2} + y^{2}}\,\dd x\,\dd y}$
Con $\ds{\vec{r} = x\,\hat{x} + y\,\hat{y}}$ , tenga en cuenta que en $\ds{2}$ D: \begin{align} r & = {1 \over 3}\nabla\cdot\pars{r\vec{r}\,} = {1 \over 3} \bracks{\partiald{\pars{rx}}{x} - \partiald{\pars{-ry}}{y}} = {1 \over 3}\,\bracks{\nabla \times \pars{-ry\,\hat{x} + rx\,\hat{y}\,}}_{\ z} \end{align}
Con el Teorema de Stokes:
\begin{align} &\int_{0}^{1}\int_{0}^{1}\root{x^{2} + y^{2}}\,\dd x\,\dd y = {1 \over 3}\oint_{\mrm{square}}\pars{-ry\,\hat{x} + rx\,\hat{y}\,}\cdot\dd\vec{r} \\[5mm] = &\ {1 \over 3}\bracks{ \int_{0}^{1}\root{1 + y^{2}} \times 1\,\dd y + \int_{1}^{0}\pars{-\root{x^{2} + 1} \times 1}\,\dd x} = {2 \over 3}\int_{0}^{1}\root{1 + x^{2}}\,\dd x \\[5mm] = &\ \bbx{\ds{\root{2} + \,\mrm{arcsinh}\pars{1} \over 3}} \end{align}
La integral se evalúa con el cambio de variables $\ds{x = \sinh\pars{\theta}}$ :
\begin{align} \int_{0}^{1}\root{1 + x^{2}}\,\dd x & = \int_{0}^{\mrm{arcsinh\pars{1}}}\cosh^{2}\pars{\theta}\,\dd\theta = \int_{0}^{\mrm{arcsinh\pars{1}}}{1 + \cosh\pars{2\theta} \over 2}\,\dd\theta \\[5mm] & = {1 \over 2}\,\mrm{arcsinh}\pars{1} + \bracks{{1 \over 2}\,\sinh\pars{\theta} \root{1 + \sinh^{2}\pars{\theta}}}_{\ 0}^{\ \,\mrm{arcsin}\pars{1}} \\[5mm] & = {\,\mrm{arcsinh}\pars{1} + \root{2} \over 2} \end{align}
0 votos
He mejorado la terminología y la composición tipográfica; véanse mis ediciones de la pregunta.