Deje $$ I_1 = \int_0^\pi \frac{dx}{\sqrt{n^2+1}+\sin(x)+n\cos(x)}, I_2 = \int_0^\pi \frac{n dx}{\sqrt{n^2+1}+n\sin(x)+\cos(x)}.
$$ % Que $u=\tan\frac{x}{2}$. Entonces $x=2\arctan u$, $\sin x=\frac{2u}{1+u^2},\cos x=\frac{1-u^2}{1+u^2}$. Por lo tanto
\begin{eqnarray}
I_1&=&\int_0^\infty \frac{1}{\sqrt{n^2+1}+\frac{2u}{1+u^2}+n\frac{1-u^2}{1+u^2}}\frac2{1+u^2}du\\
&=&2\int_0^\infty \frac{1}{\sqrt{n^2+1}(1+u^2)+2u+n(1-u^2)}du\\
&=&2\int_0^\infty \frac{1}{(\sqrt{n^2+1}-n)u^2+2u+(\sqrt{n^2+1}+n)}dx\\
&=&2\int_0^\infty \frac{\sqrt{n^2+1}+n}{u^2+2(\sqrt{n^2+1}+n)u+(\sqrt{n^2+1}+n)^2}du\\
&=&2\int_0^\infty \frac{\sqrt{n^2+1}+n}{(u+\sqrt{n^2+1}+n)^2}du\\
&=&2.
\end{eqnarray} semejantemente %#% $ de #% hecho.