Si $r>1$ :
$\sum_{k=1}^{n}\left(\begin{array}{c} k\\ r \end{array}\right)=\sum_{k=1}^{n}\left(\begin{array}{c} k-1\\ r \end{array}\right)+\sum_{k=1}^{n}\left(\begin{array}{c} k-1\\ r-1 \end{array}\right)=\\ =\sum_{k=0}^{n-1}\left(\begin{array}{c} k\\ r \end{array}\right)+\sum_{k=0}^{n-1}\left(\begin{array}{c} k\\ r-1 \end{array}\right)=\\ =\sum_{k=1}^{n}\left(\begin{array}{c} k\\ r \end{array}\right)-\left(\begin{array}{c} n\\ r \end{array}\right)+\left(\begin{array}{c} 0\\ r \end{array}\right)+\sum_{k=1}^{n}\left(\begin{array}{c} k\\ r-1 \end{array}\right)-\left(\begin{array}{c} n\\ r-1 \end{array}\right)+\left(\begin{array}{c} 0\\ r-1 \end{array}\right)=\\ =\sum_{k=1}^{n}\left(\begin{array}{c} k\\ r \end{array}\right)-\left(\begin{array}{c} n\\ r \end{array}\right)+\sum_{k=1}^{n}\left(\begin{array}{c} k\\ r-1 \end{array}\right)-\left(\begin{array}{c} n\\ r-1 \end{array}\right)=\\ =\sum_{k=1}^{n}\left(\begin{array}{c} k\\ r \end{array}\right)+\sum_{k=1}^{n}\left(\begin{array}{c} k\\ r-1 \end{array}\right)-\left(\begin{array}{c} n+1\\ r \end{array}\right) $
$\sum_{k=1}^{n}\left(\begin{array}{c} k\\ r \end{array}\right)=\sum_{k=1}^{n}\left(\begin{array}{c} k\\ r \end{array}\right)+\sum_{k=1}^{n}\left(\begin{array}{c} k\\ r-1 \end{array}\right)-\left(\begin{array}{c} n+1\\ r \end{array}\right) $
$\sum_{k=1}^{n}\left(\begin{array}{c} k\\ r-1 \end{array}\right)=\left(\begin{array}{c} n+1\\ r \end{array}\right) $
O $\sum_{k=1}^{n}\left(\begin{array}{c} k\\ r \end{array}\right)=\left(\begin{array}{c} n+1\\ r+1 \end{array}\right) $ (para $r>0$ )
Por lo tanto, si $\begin{equation} m^4 = Z{m\choose 4}+Y{m\choose 3}+X{m\choose 2}+W{m\choose 1} \end{equation}$ entonces $\sum_{k=1}^{n}k^{4}=X\left(\begin{array}{c} n+1\\ 5 \end{array}\right)+Y\left(\begin{array}{c} n+1\\ 4 \end{array}\right)+Z\left(\begin{array}{c} n+1\\ 3 \end{array}\right)+W\left(\begin{array}{c} n+1\\ 2 \end{array}\right) $
Lo recuerdo del libro http://en.wikipedia.org/wiki/Concrete_Mathematics donde Knuth y compañía hicieron lo mismo que tú quieres hacer ahora.
También sugiero el libro relacionado $A=B$ (sobre la suma de sumas hipergeométricas) que se puede descargar legalmente aquí - http://www.math.upenn.edu/~wilf/Downld.html
Así que, si lo he entendido bien, entonces en el caso general
$$\sum_{k=1}^{n}k^{m}=\sum_{k=1}^{m}k!\left\{ \begin{array}{c} m\\ k \end{array}\right\} \left(\begin{array}{c} n+1\\ k+1 \end{array}\right) $$