$\bf{My\; Solution::}$ Let $\displaystyle I = \int \sqrt{\sec x+\tan x}\cdot \sec^2 xdx = \int\frac{\sqrt{\sec^2 x-\tan^2 x}}{\sqrt{\sec x-\tan x}}\cdot \sec^2 xdx$
Ahora Integral $\displaystyle I = \int\frac{\sec^2 x}{\left(\sec x-\tan x \right)^{\frac{1}{2}}}dx$
Ahora que $\left(\sec x-\tan x \right) = t^2\;,$ % entonces $\sec x\cdot \left(\tan x-\sec x\right)dx = 2tdt\Rightarrow \sec x\cdot t dx =-2tdt$
Así $\sec xdx = -2dt$ % tan Integral $\displaystyle I = -2\int \frac{\sec x }{t}dt$
Ahora utilizando $\displaystyle \left(\sec x- \tan x\right) = t$ y $\displaystyle \left(\sec x+\tan x \right) = \frac{1}{t}$
Utilizando $\left(\sec^2 x-\tan^2 x\right) = 1$
Así $\displaystyle 2\sec x = t+\frac{1}{t} = \frac{t^2+1}{t}$
Tan Integral $\displaystyle I = -\int\frac{t^2+1}{t^2}dt = -t+\frac{1}{t}+\mathbb{C}$
Así $\displaystyle I = \int \sqrt{\sec x+\tan x}\cdot \sec^2 xdx = -\left(\sec x-\tan x\right)+\frac{1}{\left(\sec x -\tan x\right)}+\mathbb{C}$
$\displaystyle = -\left(\sec x-\tan x\right)+\left(\sec x+\tan x\right)+\mathbb{C} = 2\tan x+\mathbb{C}$