$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove armada]{\displaystyle{#1}}\,}
\newcommand{\llaves}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
Con la identidad
$\ds{\sum_{k = 1}^{N}{1 \over n^{s}} =
{N^{1 - s} \over s} + \zeta\pars{s} +
s\int_{N}^{\infty}{\llaves{x} \over x^{s + 1}}\,\dd x}$:
\begin{align}
\left\lfloor\sum_{n = 2}^{1000}{1 \over \root{n}}\right\rfloor & =
\left\lfloor-1 + \sum_{n = 1}^{1000}{1 \over \root{n}}\right\rfloor =
\left\lfloor-1 + \pars{2\root{1000} + \zeta\pars{1 \over 2} +
{1 \over 2}\int_{1000}^{\infty}{\braces{x} \over x^{3/2}}\,\dd x}\right\rfloor
\\[5mm] & =
\left\lfloor\underbrace{20\root{10} + \zeta\pars{1 \over 2} - 1}
_{\ds{\approx\ \color{#f00}{60.7852}}}\ +\
\underbrace{{1 \over 2}\int_{1000}^{\infty}{\braces{x} \over x^{3/2}}\,\dd x}
_{\ds{\left\vert\begin{array}{l}\ds{> 0}
\\
\mbox{and}\ <\ {\root{10} \over 100}\ \approx\ \color{#f00}{0.0316}
\end{array}\right.}}\a la derecha\rfloor = \bbx{\ds{\large\color{#f00}{60}}}
\end{align}