Si usted tiene una sola variable explicativa, digamos grupo de tratamiento, un modelo de regresión de Cox está equipado con coxph()
; el coeficiente (coef
) se lee como un coeficiente de regresión (en el contexto del modelo de Cox, que se describe a continuación) y su exponencial da el riesgo en el grupo de tratamiento (en comparación con el control o grupo de placebo). Por ejemplo, si $\hat\beta=-1.80$, entonces el riesgo es $\exp(-1.80)=0.165$, que es de 16.5%.
Como usted puede saber, la función de riesgo es modelada como
$$
h(t)=h_0(t)\exp(\beta x)
$$
where $h_0(t)$ is the baseline hazard. The hazards depend multiplicatively on the covariates, and $\exp(\beta_1)$ is the ratio of the hazards between two individuals whose values of $x_1$ differ by one unit when all other covariates are held constant. The ratio of the hazards of any two individuals $i$ and $j$ is $\exp\big(\beta'(x_i-x_j)\big)$, and is called the hazard ratio (or incidence rate ratio). This ratio is assumed to be constant over time, hence the name of proportional hazard.
To echo your preceding question about survreg
, here the form of $h_0(t)$ is left unspecified; more precisely, this is a semi-parametric model in that only the effects of covariates are parametrized, and not the hazard function. In other words, we don't make any distribution assumption about survival times.
The regression parameters are estimated by maximizing the partial log-likelihood defined by
$$
\ell=\sum_f\log\left(\frac{\exp(\beta'x_f)}{\sum_{i(f)}\exp(\beta'x_r)}\right)
$$
where the first summation is over all deaths or failures $f$, and the second summation is over all subjects $r(f)$ still alive (but at risk) at the time of failure -- this is known as the risk set. In other words, $\ell$ can be interpreted as the log profile likelihood for $\beta$ after eliminating $h_0(t)$ (or in other words, the LL where the $h_0(t)$ have been replaced by functions of $\beta$ that maximize the likelihood with respect to $h_0(t)$ for a fixed vector $\beta$).
About censoring, it is not clear whether you refer to left censoring (as might be the case if we consider an origin for the time scale that is earlier than the time when observation began, also called delayed entry), or right-censoring. In any case, more details about the computation of the regression coefficients and how the survival package handles censoring can be found in Therneau and Grambsch, Modeling Survival Data (Springer, 2000). Terry Therneau is the author of the former S package. An online tutorial is available.
Survival Analysis in R, by David Diez, provides a good introduction to Survival Analysis in R. A brief overview of $\chi^2$ pruebas para los parámetros de regresión se da p. 10. Con suerte, esto debería ayudar a aclarar la ayuda en línea citado por @único, "coeficientes los coeficientes del predictor lineal, que se multiplican las columnas del modelo de la matriz." Para aplicar un libro de texto, recomiendo el Análisis de los Datos Médicos con S-PLUS, por Everitt y Rabe-Hesketh (Springer, 2001, cap. 16 y 17), de la que la mayoría de los de arriba viene.
Otra utilidad de la referencia a John Fox apéndice sobre Riesgos Proporcionales de Cox de Regresión para Datos de Supervivencia.