$\newcommand{\+}{^{\daga}}
\newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, nº 1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\down}{\downarrow}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\isdiv}{\,\left.\a la derecha\vert\,}
\newcommand{\cy}[1]{\left\vert #1\right\rangle}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left (\, nº 1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\vphantom{\large Un}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}
\newcommand{\wt}[1]{\widetilde{#1}}$
$\ds{I_{n}\equiv
\int_{0}^{\pi/2}{\sin\pars{n\theta} \\sin\pars{\theta}}\,\dd\theta:
\ {\large ?}}$
Desde $\ds{I_{n} = -I_{-n}}$, vamos a estudiar el caso de $\ds{n > 0}$:
\begin{align}
I_{n\ >\ 0}&=\Im\int_{0}^{\pi/2}{\expo{\ic n\theta} - 1\over \sin\pars{\theta}}\,\dd\theta
=\Im
\int_{\verts{z}\ =\ 1 \atop {\phantom{\Huge A}0\ <\ {\rm Arg}\pars{z}\ <\ \pi/2}}
{z^{n} - 1 \over \pars{z^{2} - 1}/\pars{2\ic z}}\,{\dd z \over \ic z}
\\[3mm]&=2\,\Im
\int_{\verts{z}\ =\ 1 \atop {\phantom{\Huge A}0\ <\ {\rm Arg}\pars{z}\ <\ \pi/2}}
{1 - z^{n} \over -z^{2} + 1}\,\dd z
\\[3mm]&=2\,\Im\bracks{%
-\int_{1}^{0}{1 - \expo{\ic\pi n/2}y^{n} \over y^{2} + 1}\,\ic\,\dd y
-\int_{0}^{1}{1 - x^{n} \over -x^{2} + 1}\,\dd x}
=2\,\Re\int_{0}^{1}{1 - \expo{\ic\pi n/2}y^{n} \over y^{2} + 1}\,\dd y
\\[3mm]&=\underbrace{2\int_{0}^{1}{\dd y \over y^{2} + 1}}
_{\ds{=\ {\pi \over 2}}}\ -\
2\cos\pars{n\pi \over 2}\int_{0}^{1}{y^{n}\,\dd y \over y^{2} + 1}
\end{align}
$$
I_{n\ >\ 0}={\pi \over 2}
-2\cos\pars{n\pi \over 2}\int_{0}^{1}{y^{n}\,\dd y \y^{2} + 1}
\,,\qquad\qquad I_{n\ <\ 0} = -I_{-n}
$$
\begin{align}
&\color{#c00000}{\int_{0}^{1}{y^{n}\,\dd y \over y^{2} + 1}}
=\int_{0}^{\infty}{\expo{-\pars{n + 1}t} \over 1 + \expo{-2t}}\,\dd t
=\sum_{\ell = 0}^{\infty}\pars{-1}^{\ell}
\int_{0}^{\infty}\expo{-\pars{2\ell + n + 1}t}\,\dd t
=\sum_{\ell = 0}^{\infty}{\pars{-1}^{\ell} \over 2\ell + n + 1}
\\[3mm]&={1 \over 4}\bracks{\Psi\pars{n + 3 \over 4} - \Psi\pars{n + 1 \over 4}}
\end{align}
donde $\ds{\Psi\pars{z}}$ es la
La Función Digamma
${\bf\mbox{6.3.1}}$.
$$\color{#44f}{%
I_{n}=\left\lbrace\begin{array}{lcl}
-I_{-n} & \mbox{if} & n < 0
\\[1mm]
0 & \mbox{if} & n = 0
\\[3mm]
\color{#c00000}{\left.\begin{array}{lcl}
{\pi \over 2} & \mbox{if} & n\ \mbox{is odd}
\\
{\pi \over 2} - \half\,\pars{-1}^{n/2}
\bracks{\Psi\pars{n + 3 \over 4} - \Psi\pars{n + 1 \over 4}}
& \mbox{if} & n\ \mbox{is even}
\end{array}\right\rbrace} & \mbox{si} & n > 0
\end{array}\right.}
$$