$\newcommand{\angles}[1]{\left\langle\,{#1}\,\right\rangle} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\half}{{1 \over 2}} \newcommand{\ic}{\mathrm{i}} \newcommand{\iff}{\Leftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align} \color{#f00}{I} & = \int_{0}^{\infty}\expo{-2x}\ln\pars{1 + \expo{-x} \over 1 - \expo{-x}}\,\dd x = 2\int_{0}^{\infty}\expo{-2x}\,\mathrm{arctanh}\pars{\expo{-x}}\,\dd x \\[3mm] & = 2\int_{0}^{\infty}\expo{-2x}\, \sum_{n = 0}^{\infty}{\expo{-\pars{2n + 1}x} \over 2n + 1}\,\dd x = 2\sum_{n = 0}^{\infty}{1 \over 2n + 1} \int_{0}^{\infty}\expo{-\pars{2n + 3}x}\,\dd x \\[3mm] & = \half\sum_{n = 0}^{\infty}{1 \over \pars{n + 3/2}\pars{n + 1/2}} = \half\sum_{n = 0}^{\infty}\pars{{1 \over n + 1/2} - {1 \over n + 3/2}} = \half\,{1 \over 0 + 1/2} = \color{#f00}{1} \end{align}
4 votos
¿Interesante cómo? Yo mismo creo que tu manera es bastante interesante...
0 votos
Como en un estilo diferente de abordar este problema.
0 votos
Supongo que algo como sustituir $u=1-e^{-x}$ es técnicamente diferente...