6 votos

Encontrar el valor exacto de $ \sum \frac{4n-3}{n(n^2-4)} $

Me gustaría encontrar el valor exacto de la serie

$$\begin{align*} \sum_{n=3}^{\infty} \frac{4n-3}{n(n^2-4)} \end{align*} $$

que es sin duda una serie telescópica. ¿Tienes alguna idea de cancelación telescópica?

5voto

Chon Puntos 2627

$$\begin{align*} \frac{4n-3}{n(n^2-4)}=\frac{3}{4n}-\frac{11}{8(n+2)}+\frac{5}{8(n-2)} \end{align*} $$

$$\begin{align*} \frac{4n-3}{n(n^2-4)}=\frac{1}{8}(6(\frac{1}{n}-\frac{1}{n+2})+5(\frac{1}{n-2}-\frac{1}{n+2})) \end{align*} $$

$$\begin{align*} \sum_{n=3}^{m}\frac{1}{n}-\frac{1}{n+2}=\frac{7}{12}-\frac{1}{m+1}-\frac{1}{m+2}\rightarrow7/12\end{align*}$$

$$\begin{align*} \sum_{n=3}^{m}\frac{1}{n-2}-\frac{1}{n+2}=\frac{25}{12}-\frac{1}{m-1}-\frac{1}{m}-\frac{1}{m+1}-\frac{1}{m+2}\rightarrow25/12 \end{align*}$$

$$\begin{align*} \sum_{n=3}^{\infty} \frac{4n-3}{n(n^2-4)}=\frac{1}{8}(6\times7/12+5\times25/12)=\frac{167}{96} \end{align*} $$

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X