$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove armada]{\displaystyle{#1}}\,}
\newcommand{\llaves}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
&8\int_{0}^{\infty}{\ln\pars{x} \over x}
\pars{\expo{-x} - {1 \over \root[4]{1 + 8x}}}\,\dd x
\,\,\,\stackrel{\mrm{IBP}}{=}\,\,\,
-4\int_{0}^{\infty}\ln^{2}\pars{x}
\bracks{-\expo{-x} + {2 \over \pars{1 + 8x}^{5/4}}}\,\dd x
\\[5mm] & =
4\ \overbrace{\pars{\gamma^{2} + {\pi^{2} \over 6}}}^{\ds{\Gamma''\pars{1}}} -
8\int_{0}^{\infty}{\ln^{2}\pars{x} \over \pars{1 + 8x}^{5/4}}\,\dd x =
4\gamma^{2} + {2 \over 3}\,\pi^{2} -
\left.8\,\partiald[2]{}{\mu}\int_{0}^{\infty}{x^{\mu} \over \pars{1 + 8x}^{5/4}}\,\dd x\,\right\vert_{\ \mu\ =\ 0}
\end{align}
\begin{align}
&\int_{0}^{\infty}{x^{\mu} \over \pars{1 + 8x}^{5/4}}\,\dd x =
\int_{0}^{\infty}x^{\mu}\bracks{{1 \over \Gamma\pars{5/4}}\int_{0}^{\infty}t^{1/4}\expo{-\pars{1 + 8x}t}\,\dd t}\,\dd x
\\[5mm] = &\
{1 \over \Gamma\pars{5/4}}
\int_{0}^{\infty}t^{1/4}\expo{-t}\int_{0}^{\infty}x^{\mu}\expo{-8tx}
\,\dd x\,\dd t =
{1 \over \Gamma\pars{5/4}}\int_{0}^{\infty}t^{1/4}\expo{-t}
\,{\Gamma\pars{\mu + 1} \over \pars{8t}^{\mu + 1}}\,\dd t
\\[5mm] = &\
{8^{-\mu - 1}\,\Gamma\pars{\mu + 1} \over \Gamma\pars{5/4}}
\int_{0}^{\infty}t^{-3/4 - \mu}\expo{-t}\,\dd t =
{1 \over \Gamma\pars{5/4}}\,8^{-\mu - 1}\,\Gamma\pars{\mu + 1}
\Gamma\pars{{1 \over 4} - \mu}
\end{align}
$$
\mbox{y}\
\left.\partiald[2]{}{\mu}\bracks{{1 \over \Gamma\pars{5/4}}\,
8^{-\mu - 1}\,\Gamma\pars{\mu + 1}\Gamma\pars{{1 \over 4} - \mu}}
\right\vert_{\ \mu\ =\ 0} = 4C + {17 \más de 24}\,\pi^{2}
$$
\begin{align}
&8\int_{0}^{\infty}{\ln\pars{x} \over x}
\pars{\expo{-x} - {1 \over \root[4]{1 + 8x}}}\,\dd x =
4\gamma^{2} + {2 \over 3}\,\pi^{2} -
8\pars{4C + {17 \over 24}\,\pi^{2}}
\\[5mm] = &
\bbx{\ds{-32C + 4\gamma^{2} - 5\pi^{2}}}
\end{align}