Resolver el siguiente indefinido integrales:
$$ \begin{align} &(1)\;\;\int\frac{1}{\sin^3 x+\cos^3 x}dx\\ &(2)\;\;\int\frac{1}{\sin^5 x+\cos^5 x}dx \end{align} $$
Mi Intento por $(1)$:
$$ \begin{align} I &= \int\frac{1}{\sin^3 x+\cos ^3 x}\;dx\\ &= \int\frac{1}{\left(\sin x+\cos x\right)\left(\sin^2 x+\cos ^2 x-\sin x \cos x\right)}\;dx\\ &= \int\frac{1}{\left(\sin x+\cos x\right)\left(1-\sin x\cos x\right)}\;dx\\ &= \frac{1}{3}\int \left(\frac{2}{\left(\sin x+\cos x\right)}+\frac{\left(\sin x+\cos x \right)}{\left(1-\sin x\cos x\right)}\right)\;dx\\ &= \frac{2}{3}\int\frac{1}{\sin x+\cos x}\;dx + \frac{1}{3}\int\frac{\sin x+\cos x}{1-\sin x\cos x}\;dx \end{align} $$
El uso de las identidades
$$ \sen x = \frac{2\tan \frac{x}{2}}{1+\tan ^2 \frac{x}{2}},\;\cos x = \frac{1-\tan ^2 \frac{x}{2}}{1+\tan^2 \frac{x}{2}} $$
podemos transformar la integral a
$$I = \frac{1}{3}\int\frac{\left(\tan \frac{x}{2}\right)^{'}}{1-\tan^2 \frac{x}{2}+2\tan \frac{x}{2}}\;dx+\frac{2}{3}\int\frac{\left(\sin x- \cos x\right)^{'}}{1+(\sen x-\cos x)^2}\;dx $$
La integral es fácil de calcular a partir de aquí.
Mi Intento por $(2)$:
$$ \begin{align} J &= \int\frac{1}{\sin^5 x+\cos ^5 x}\;dx\\ &= \int\frac{1}{\left(\sin x+\cos x\right)\left(\sin^4 x -\sin^3 x\cos x+\sin^2 x\cos^2 x-\sin x\cos^3 x+\cos^4 x\right)}\;dx\\ &= \int\frac{1}{(\sin x+\cos x)(1-2\sin^2 x\cos^2 x-\sin x\cos x+\sin^2 x\cos^2 x)}\;dx\\ &= \int\frac{1}{\left(\sin x+\cos x\right)\left(1-\sin x\cos x-\left(\sin x\cos x\right)^2\right)}\;dx \end{align} $$
Cómo puedo solucionar $(2)$ a partir de este punto?