Quiero evaluar la suma $$\large\sum_{n=2}^{\infty} \frac{n^4+3n^2+10n+10}{2^n(n^4+4)}.$$ I did partial fraction decomposition to get $% $ $\frac{1}{2^n}\left(\frac{-1}{n^2+2n+2}+\frac{4}{n^2-2n+2}+1\right)$absolutamente estoy atrapado después de esto.
Respuestas
¿Demasiados anuncios?Usted está casi allí.
Así que una vez se ha obtenido $$\frac{1}{2^n}\left(\frac{-1}{n^2+2n+2}+\frac{4}{n^2-2n+2}+1\right)$ $ luego observa lo siguiente:
$n^2+2n+2=(n+1)^2+1$ and $n^2-2n+2=(n-1)^2+1$. Que significa la suma dada se convierte en $$\sum\limits_{n=2}^\infty \left[\frac{-1}{2^n\{(n+1)^2+1\}}+\frac{1}{2^{n-2}\{(n-1)^2+1\}} \right] +\sum\limits_{n=2}^\infty \frac{1}{2^n}=:\sum\limits_{n=2}^\infty [u_n-u_{n+2}]+\frac 12 $$ where $u_n:=\frac{1}{2^{n-2}\ {(n-1) ^ 2 + 1\}} $.
Si calculas $\sum\limits_{n=2}^m[u_n-n_{n+2}]$, usted encontrará $u_2+u_3-(u_{m+1}+u_{m+2})$. por lo tanto tomando $m\rightarrow \infty$ conseguiremos $$\sum\limits_{n=2}^\infty [u_n-u_{n+2}]=u_2+u_3=\frac{1}{2}+\frac{1}{10}.$ $
Por lo tanto la suma final es $2\times \frac 12+\frac{1}{10}=\cdots.$
Tenga en cuenta que % $ $$\dfrac{n^4+3n^2+10n+10}{2^n(n^4+4)}=\dfrac{1}{2^n}+\dfrac{3n^2+10n+6}{2^n[(n^2+2)^2-(2n)^2]}$entonces vamos a buscar constantes $A,B$ suct que $$\dfrac{3n^2+10n+6}{(n^2+2n+2)(n^2-2n+2)}=\dfrac{A(n+1)+B}{(n+1)^2+1}-4\Big[\dfrac{A(n-1)+B}{(n-1)^2+1}\Big]$$ to obtain the form $% $ $f(n+1)-f(n-1).$$n=-1,$tenemos $-\dfrac{1}{5}=B+4\Big(\dfrac{2A-B}{5}\Big)\iff8A+B=-1.$
$n=+1,$ Tenemos $\dfrac{19}{5}=\Big(\dfrac{2A+B}{5}\Big)-4B\iff2A-19B=19.$
Resolviendo estas ecuaciones, $$A=0,\,\,\,\,\,B=-1$ $
¿Ahora $$\dfrac{n^4+3n^2+10n+10}{2^n(n^4+4)}=\dfrac{1}{2^n}-\dfrac{1}{2^n((n+1)^2+1)}+\dfrac{1}{2^{n-2}((n-1)^2+1)}$ $ puede seguir desde aquí? Buena suerte.