6 votos

¿Dos enteros positivos únicamente recuperables de sus diferencia y XOR?

Como parte de una respuesta a un Stack Overflow pregunta que me he hecho la suposición de que si puedo elegir dos números enteros positivos $m$$n$, les dará $m - n$ $m$ XOR $n$, entonces se puede determinar de forma única lo $m$ $n$ fueron. Para todos los ejemplos que he intentado esto parece funcionar correctamente, pero no tengo ninguna razón para creer que esto debería funcionar en general. Por otra parte, no estoy lo suficientemente familiarizado con las interacciones de las diferencias (o de las cantidades, para esa materia) y XOR a deivse una prueba o contraejemplo.

Es que mi reclamo es cierto? Si es así, ¿cómo usted va sobre la prueba? Si no, hay un buen contraejemplo?

Muchas gracias!

9voto

Alex Bolotov Puntos 249

Creo que esto es falso.

Que $2^r \gt m \gt n$.

Entonces

$2^r + m$ y $2^r +n$ tienen la misma diferencia y XOR como $m,n$.

2voto

Shabaz Puntos 403

¿Por qué (2,3) y (16,17)? Además de algunos personajes

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X