Puede observar que, como $n \to \infty$ , $$ \begin{align} {\frac{n+\lfloor \sqrt{n} \rfloor^2}{n-\lfloor \sqrt{n} \rfloor}}&={\frac{2n+(\lfloor \sqrt{n} \rfloor-\sqrt{n})(\lfloor \sqrt{n} \rfloor+\sqrt{n})}{n-\lfloor \sqrt{n} \rfloor}}\\\\ &={\frac{2+(\lfloor \sqrt{n} \rfloor-\sqrt{n})(\lfloor \sqrt{n} \rfloor+\sqrt{n})/n}{1-\lfloor \sqrt{n} \rfloor/n}} \\\\& \to 2 \end{align} $$ ya que, como $n \to \infty$ , $$ \left|\frac{\lfloor \sqrt{n} \rfloor}{n}\right|\leq\frac{\sqrt{n}}{n} \to 0 $$ y $$ \left|\frac{(\lfloor \sqrt{n} \rfloor-\sqrt{n})(\lfloor \sqrt{n} \rfloor+\sqrt{n})}{n}\right|\leq\frac{2\sqrt{n}}{n} \to 0. $$
2 votos
A medida que el límite se aproxima a infinito, la función suelo se vuelve insignificante.