La pregunta es evaluar $$\lim_{n\rightarrow \infty} n\sin(2\pi e n!)$$
Tenemos $e = 1 + \dfrac1{1!} + \dfrac1{2!} + \dfrac1{3!} + \cdots + \dfrac1{n!} + \dfrac1{(n+1)!} + \dfrac1{(n+2)!} + \cdots$
$$n!e=n!(1 + \dfrac1{1!} + \dfrac1{2!} + \dfrac1{3!} + \cdots + \dfrac1{n!} + \dfrac1{(n+1)!} + \dfrac1{(n+2)!} + \cdots)$$
$$=M+\dfrac1{n+1} + \dfrac1{(n+1)(n+2)} + \dfrac1{(n+1)(n+2)(n+3)} + \cdots$$ para algunos entero $M$.
Ahora, para $2\pi e n!$ tenemos :
$$2\pi e n!=2\pi (M+\dfrac1{n+1} + \dfrac1{(n+1)(n+2)} + \dfrac1{(n+1)(n+2)(n+3)} + \cdots)$$
$$=(2\pi M+\dfrac{2\pi}{n+1} + \dfrac{2\pi}{(n+1)(n+2)} + \dfrac{2\pi}{(n+1)(n+2)(n+3)} + \cdots)$$
Para $\sin(2\pi e n!)$ Tenemos :
$$\sin(2\pi e n!)=\sin(2\pi M+\dfrac{2\pi}{n+1} + \dfrac{2\pi}{(n+1)(n+2)} + \dfrac{2\pi}{(n+1)(n+2)(n+3)} + \cdots)$$
$$=\sin(\dfrac{2\pi}{n+1} + \dfrac{2\pi}{(n+1)(n+2)} + \dfrac{2\pi}{(n+1)(n+2)(n+3)} + \cdots)$$
Para $n\sin(2\pi e n!)$ tenemos :
$$n\sin(2\pi e n!)=n\sin(\dfrac{2\pi}{n+1} + \dfrac{2\pi}{(n+1)(n+2)} + \dfrac{2\pi}{(n+1)(n+2)(n+3)} + \cdots)$$
Para un gran $n$ tendríamos
$$\sin(\dfrac{2\pi}{n+1} + \dfrac{2\pi}{(n+1)(n+2)} + \dfrac{2\pi}{(n+1)(n+2)(n+3)} + \cdots)$$
$$=\dfrac{2\pi}{n+1} + \dfrac{2\pi}{(n+1)(n+2)} + \dfrac{2\pi}{(n+1)(n+2)(n+3)} + \cdots$$
Espero me puedan decir que un gran $n$
$$n\sin(2\pi e n!)=n(\dfrac{2\pi}{n+1} + \dfrac{2\pi}{(n+1)(n+2)} + \dfrac{2\pi}{(n+1)(n+2)(n+3)} + \cdots)$$
$$=\frac{2\pi}{1+\frac{1}{n}}+\dfrac{2\pi}{(1+\frac{1}{n})(n+2)} + \dfrac{2\pi}{(1+\frac{1}{n})(n+2)(n+3)} + \cdots)$$
Como $n\rightarrow \infty$ tendríamos :
$$\frac{2\pi}{1+0}+0+0+0+\dots=2\pi$$
Por eso, $$\lim_{n\rightarrow \infty} n\sin(2\pi e n!)=2\pi$$
Yo estaría muy agradecido si alguien puede comprobar lo que he hecho es suficiente....
Gracias :)