No una respuesta, pero sólo algunos de los resultados que se encuentran.
Denotar $s_m=\sum_{k=1}^nk^m.$
Supongamos que
$$s_{2m+1}=\sum_{i=1}^m a_is_i^2,a_i\in\mathbb Q.$$
Utilice el método de coeficientes indeterminados, podemos obtener una lista de $\{m,\{a_i\}\}$:
$$\begin{array}{l}
\{1,\{1\}\} \\
\left\{2,\left\{-\frac{1}{2},\frac{3}{2}\right\}\right\} \\
\left\{3,\left\{\frac{1}{2},-\frac{3}{2},2\right\}\right\} \\
\left\{4,\left\{-\frac{11}{12},\frac{11}{4},-\frac{10}{3},\frac{5}{2}\right\}\right\} \\
\left\{5,\left\{\frac{61}{24},-\frac{61}{8},\frac{28}{3},-\frac{25}{4},3\right\}\right\} \\
\left\{6,\left\{-\frac{1447}{144},\frac{1447}{48},-\frac{332}{9},\frac{595}{24},-\frac{21}{2},\frac{7}{2}\right\}\right\} \\
\left\{7,\left\{\frac{5771}{108},-\frac{5771}{36},\frac{5296}{27},-\frac{2375}{18},56,-\frac{49}{3},4\right\}\right\} \\
\left\{8,\left\{-\frac{53017}{144},\frac{53017}{48},-\frac{60817}{45},\frac{21817}{24},-\frac{3861}{10},\frac{1127}{10},-24,\frac{9}{2}\right\}\right\} \\
\left\{9,\left\{\frac{2755645}{864},-\frac{2755645}{288},\frac{632213}{54},-\frac{1133965}{144},\frac{13379}{4},-\frac{11725}{12},208,-\frac{135}{4},5\right\}\right\}\end{array}$$
A través de algunos de observación, podemos encontrar que
$a_i a_{i+1}<0,a_m=\dfrac{m+1}2,a_2=-3a_1,a_{m-1}=\dfrac{1}{24} m^2 (m+1).$