Creo que ahora tengo una respuesta para mi pregunta.
Deje ˜σ:(K×s)×(K×s)→R sea la función dada por ˜σ((λ,x),(α,a))=|λ−α|+ρ(x,a) , for all (λ,x),(α,a)∈K×s. It is already known that ˜σ is a metric on K×s and that this metric induces the product topology ˜τ of (K,η) with (s,τ), where η is the topology on K induced by the norm given by the absolute value function |⋅|:K→R.
Deje M:K×s→s ser la multiplicación escalar de la función, que es M(λ,x)=λ⋅x=λx, ∀(λ,x)∈K×s.
Deje (α,a)∈K×s ε>0 ser fijo. Considere la posibilidad de (λ,x)∈K×s. Tenemos ρ(λx,αa)=∞∑n=112n|λxn−αan|(1+|λxn−αan|)=lim where \ (S_j)_{j =1}^{\infty} \in \mathbb{R}^{\omega} \ is the sequence of partial sums, given by \ \displaystyle S_j = \sum_{n=1}^{j} \frac{1}{2^n} \frac{| \lambda x_n - \alpha a_n|}{(1+| \lambda x_n - \alpha a_n|)} \, , for all \ j \in \mathbb{N}^*. There exists some \ k \in \mathbb{N}^* such that, \forall n \in \mathbb{N}^*, if \ n \geqslant k \ , then 0 \leqslant \rho( \lambda x , \alpha) - S_n = | \rho( \lambda x , \alpha) - S_n | < \varepsilon/2. In particular, we have 0 \leqslant \rho( \lambda x , \alpha a) - S_k = | \rho( \lambda x , \alpha a) - S_k | < \frac{\varepsilon}{2} \ , because (S_n) es monótona no decreciente real de la secuencia.
Vamos c = \min \left\{ \frac{\varepsilon}{4(|a_1| +1)} , ... , \frac{\varepsilon}{4(|a_k| +1)} \right\} and \delta = \min \left\{ c \, , \frac{\varepsilon}{2^k [4(| \alpha | +c) + \varepsilon]} \right\} \ . Then \ c>0 \ and \ \delta >0.
Supongamos que \ \tilde{\sigma} \big( (\lambda,x) , (\alpha,a) \big) < \delta. Por lo tanto | \lambda | - | \alpha | \leqslant \big| | \lambda | - | \alpha | \big| \leqslant | \lambda - \alpha | \leqslant |\lambda - \alpha | + \rho(x,a) = \tilde{\sigma} \big( (\lambda,x) , (\alpha,a) \big) < \delta \leqslant c \ \Rightarrow \ \ \Rightarrow \ 0 \leqslant | \lambda | \leqslant | \alpha | +c \ \Rightarrow \ 0 \leqslant \frac{| \lambda |}{| \alpha | +c} < 1 and, \forall n \in \{ 1 , ... , k \}, we have \ \displaystyle 0 \leqslant |a_n| < |a_n|+1 \ \Rightarrow \ 0 \leqslant \frac{|a_n|}{|a_n|+1} < 1 \ , |\lambda - \alpha | < c \leqslant \frac{\varepsilon}{4(|a_n| +1)} and \frac{1}{2^n} \frac{| x_n - a_n|}{(1+| x_n - a_n|)} \leqslant \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{| x_n - a_n|}{(1+| x_n - a_n|)} = \rho(x,a) \leqslant | \lambda - \alpha | + \rho(x,a) = = \tilde{\sigma} \big( (\lambda,x) , (\alpha,a) \big) < \delta \ \Rightarrow \ \frac{| x_n - a_n|}{1+| x_n - a_n|} < 2^n \delta \leqslant 2^k \delta \leqslant \frac{\varepsilon}{4(| \alpha | +c) + \varepsilon} \ \Rightarrow \ \ \Rightarrow \ | x_n - a_n| \cdot \left\{ 1 - \frac{\varepsilon}{[4(| \alpha | +c) + \varepsilon]} \right\} < \frac{\varepsilon}{4(| \alpha | +c) + \varepsilon} \ \Rightarrow \ \ \Rightarrow \ | x_n - a_n| \cdot \left[ \frac{4(| \alpha | +c)}{4(| \alpha | +c) + \varepsilon} \right] < \frac{\varepsilon}{4(| \alpha | +c) + \varepsilon} \ \Rightarrow \ | x_n - a_n| < \frac{\varepsilon}{4(|\alpha| + c)} \ . That gives | \lambda x_n - \alpha a_n | = | \lambda x_n - \lambda a_n + \lambda a_n - \alpha a_n | \leqslant | \lambda x_n - \lambda a_n | + | \lambda a_n - \alpha a_n | = = | \lambda (x_n - a_n) | + | (\lambda - \alpha) a_n | = | \lambda| \cdot |x_n - a_n| + |\lambda - \alpha| \cdot |a_n| < < \frac{| \lambda| \cdot \varepsilon}{4(|\alpha| + c)} + \frac{\varepsilon \cdot |a_n|}{4(|a_n| +1)} = \frac{\varepsilon}{4} \cdot \left( \frac{|\lambda|}{|\alpha|+c} + \frac{|a_n|}{|a_n|+1} \right) < \frac{\varepsilon}{4} \cdot (1+1) = \frac{\varepsilon}{2} \ , for all \ n \in \{ 1, ... , k \}.
Entonces tenemos S_k = \sum_{n=1}^{k} \frac{1}{2^n} \frac{| \lambda x_n - \alpha a_n |}{(1 + | \lambda x_n - \alpha a_n |)} < \sum_{n=1}^{k} \frac{1}{2^n} \frac{(\varepsilon/2)}{(1 + | \lambda x_n - \alpha a_n |)} = = \frac{\varepsilon}{2} \cdot \sum_{n=1}^{k} \frac{1}{2^n} \frac{1}{(1 + | \lambda x_n - \alpha a_n |)} < \frac{\varepsilon}{2} \cdot \sum_{n=1}^{k} \frac{1}{2^n} \leqslant \frac{\varepsilon}{2} \cdot \sum_{n=1}^{\infty} \frac{1}{2^n} = \frac{\varepsilon}{2} \cdot 1 = \frac{\varepsilon}{2} \ . Finally \rho \big( M(\lambda,x) , M(\alpha,a) \big) = \rho(\lambda x , \alpha a) = S_k + [\rho(\lambda x , \alpha a) - S_k] = = S_k + |\rho(\lambda x , \alpha a) - S_k| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \ .
A continuación, M es continua en a \ (\alpha , a) \in \mathbb{K} \times s.