¿Puede alguien calcular$$\prod_{i=1}^{\infty}{1+(\frac{k}{i})^3}$$ for integer k? Can it be done in closed form, using only elementary functions, without the use of the Gamma function? For k=1, the closed expressions are known to include $ \ cosh (.)$ and $ \ Pi $.
Espero usar este día para encontrar una expresión cerrada de$\zeta(3)$. Si pudiéramos calcular$$\prod_{i=1}^{\infty}{1+(\frac{z}{i})^3}$$ for complex z, it follows that $ \ zeta (3)$ is the coefficient for $ z ^ 3 $ en su expansión.