Sí es correcto, pero aquí existe otra menos descriptivo formas de la prueba.
$$\left(\forall n \in \mathbb{N}^{+}\right)
\left(\forall \mediados n\right)
\left(\existe k \in \mathbb{Z}\right)
\left( n = ak \right)$$
So, $\left(100 \mediados de 102! \wedge 100\mediados de 100!\right) \Rightarrow \left(\existe k',k" \in\mathbb{Z}\right)\left(100k' = 100! \wedge 100k" = 102!\right)$, in accordance with this
$$100! + 102! = 100 k' + 100 k'' = 100(k'+k'') \equiv 0 \pmod{100}$$
You can also provide it other way.
$$\begin{split}
\left(100 \mid 100! \wedge 100 \mid 102!\right) &\Longrightarrow \left( 100! \equiv 0 \mod{100} \wedge 102! \equiv 0 \mod{100}\right)\\ &\Longrightarrow 100! + 102! \equiv 0 \pmod{100}
\end{split}$$
But it's just other words for that.
We should note, that $100 \mediados de 100! \wedge 100 \mid 102!$. In fact you didn't have to write so much to prove it ($102! = 102 \cdot 101 \cdot 100 \cdot 99! \Rightarrow 100 \mediados de 102!$)
lo que si me pregunto 1234!
? Debemos notar que el simple hecho aquí.
$$\left(\forall n \in \mathbb{N}^{+}\right)\left(\forall a' \in \mathbb{N}^{+}\right) \left(a' \leq n \Longrightarrow a' \mid n!\right)$$
I think it's obvious, because $n! = 1 \cdot 2 \cdot 3 \cdot ... \cdot n$. Problematic can be question, if $291 \mid 100!$? But we can note $291 = 97 \cdot 3$, and $3,97 < 100 \cuña 3 \neq 97 $ así que sí.