\begin {align} & \sum\limits_ {n=0}^{ \infty }{ \frac {1 \cdot 3 \cdot 5...(2n-1)}{2 \cdot 4 \cdot 6...(2n+2)}} \\ & \text {ordenando} \\ & a_{n}= \frac {1 \cdot 3 \cdot 5...(2n-1)}{2 \cdot 4 \cdot 6...(2n+2)}= \frac {1 \cdot 3 \cdot 5...(2n-3)(2n-1) \cdot 1}{2 \cdot 4 \cdot 6...(2n-2)(2n)(2n+2)}= \\ & \underbrace { \left ( 1- \frac {1}{2} \right ) \left ( 1- \frac {1}{4} \right )... \left ( 1- \frac {1}{2n} \right )}_{n \text {veces}} \frac {1}{(2n+2)} \\ & \text {claramente} \\ & \left ( 1- \frac {1}{2} \right )^{n} \frac {1}{(2n+2)} \le a_{n} \le \left ( 1- \frac {1}{2n} \right )^{n} \frac {1}{(2n+2)} \\ & \text {Prueba de la raíz} \\ & \sqrt [n]{ \left ( 1- \frac {1}{2} \right )^{n}} \frac {1}{ \sqrt [n]{(2n+2)}} \le \sqrt [n]{a_{n}} \le \sqrt [n]{ \left ( 1- \frac {1}{2n} \right )^{n}} \frac {1}{ \sqrt [n]{(2n+2)}} \\ & n \to \infty \\ & \frac {1}{2} \le \underset {n \to \infty }{ \mathop { \lim }}\, \sqrt [n]{a_{n}} \le 1 \\ & \text {nada :(} \\ & \text {Prueba de relación} \\ & \frac {a_{n}}{a_{n-1}}= \frac {1 \cdot 3 \cdot 5...(2n-3)(2n-1)}{2 \cdot 4 \cdot 6...(2n)(2n+2)} \centerdot \frac {2 \cdot 4 \cdot 6...(2(n-1)+2)}{1 \cdot 3 \cdot 5...(2(n-1)-1)}= \frac {2n-1}{2n+2} \\ & \underset {n \to \infty }{ \mathop { \lim }}\, \frac {a_{n}}{a_{n-1}}=1 \\ & \text {nada de nuevo} \\ \end {align}
¿Alguna sugerencia?