$\newcommand{\+}{^{\daga}}
\newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, nº 1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\down}{\downarrow}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\isdiv}{\,\left.\a la derecha\vert\,}
\newcommand{\cy}[1]{\left\vert #1\right\rangle}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left (\, nº 1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\vphantom{\large Un}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}
\newcommand{\wt}[1]{\widetilde{#1}}$
$\ds{\sum_{n = 1}^{\infty}\bracks{n\ \ln\pars{2n + 1 \over 2n - 1} - 1}
={1 - \ln\pars{2} \over 2}}$
Con ${\ds{\quad N \in {\mathbb N}\,,\quad N \geq 1}}$:
\begin{align}&\color{#c00000}{\sum_{n = 1}^{N}n\ \ln\pars{2n + 1 \over 2n - 1}}
=\sum_{n = 1}^{N}n\int_{-1}^{1}{\dd x \over x + 2n}
=\half\int_{0}^{1}\sum_{n = 1}^{N}\pars{{n \over n + x/2} + {n \over n - x/2}}
\,\dd x
\\[3mm]&=\half\int_{0}^{1}\sum_{n = 1}^{N}
\pars{1 - {x/2 \over n + x/2} + 1 + {x/2 \over n - x/2}}\,\dd x
\\[3mm]&=N + {1 \over 4}\int_{0}^{1}
x\sum_{n = 1}^{N}{x \over \pars{n + x/2}\pars{n - x/2}}\,\dd x
\\[3mm]&=N + {1 \over 4}\int_{0}^{1}
x\sum_{n = 0}^{N - 1}{x \over \pars{n + 1 + x/2}\pars{n + 1 - x/2}}\,\dd x
\end{align}
$$
\color{#c00000}{\sum_{n = 1}^{N}\bracks{n\ln\pars{2n + 1 \over 2n - 1} - 1}}
={1 \over 4}\int_{0}^{1}
x\sum_{n = 0}^{N - 1}{x \\pars{n + 1 + x/2}\pars{n + 1 - x/2}}\,\dd x
$$
\begin{align}
&\color{#c00000}{\sum_{n = 1}^{\infty}\bracks{n\ln\pars{2n + 1 \over 2n - 1} - 1}}
={1 \over 4}\int_{0}^{1}x\bracks{%
\Psi\pars{1 + {x \over 2}} - \Psi\pars{1 - {x \over 2}}}\,\dd x
\\[3mm]&={1 \over 4}\int_{0}^{1}x\bracks{%
{2 \over x} + \Psi\pars{x \over 2} - \Psi\pars{1 - {x \over 2}}}\,\dd x
=\half - {1 \over 4}\int_{0}^{1}x\pi\cot\pars{\pi x \over 2}\,\dd x
\end{align}
$$
\color{#c00000}{\sum_{n = 1}^{\infty}\bracks{n\ln\pars{2n + 1 \over 2n - 1} - 1}}
=\half - {1 \over \pi}\color{#00f}{\int_{0}^{\pi/2}x\cuna\pars{x}\,\dd x}\etiqueta{1}
$$
\begin{align}&\color{#00f}{\int_{0}^{\pi/2}x\cot\pars{x}\,\dd x}
=\left.x\ln\pars{\sin\pars{x}}\vphantom{\LARGE A}\right\vert_{0}^{\pi/2}
-\
\underbrace{\int_{0}^{\pi/2}\ln\pars{\sin\pars{x}}\,\dd x}
_{\ds{-\,{\pi\ln\pars{2} \over 2}}}\ =\
\color{#00f}{{\pi\ln\pars{2} \over 2}}
\end{align}
El $\ds{\large\ln\pars{\sin\pars{\cdots}}}$integral se informa por M. SE como
una pregunta frecuente. Sustitución del último resultado en $\pars{1}$:
$$\color{#66f}{\large%
\sum_{n = 1}^{\infty}\bracks{n\ \ln\pars{2n + 1 \over 2n - 1} - 1}
={1 - \ln\pars{2} \over 2}} \approx 0.1534
$$