Ajuste del $\dfrac1x=h,$
$$\lim_{x \to \infty} \,\, \sqrt[3]{x^3-1} - x - 2$$
$$=\lim_{h\to0^+}\frac{\sqrt[3]{1-h^3}-1-2h}h$$
Ahora utilizando el método de Thomas Andrews, $$\sqrt[3]{1-h^3}-1-2h=\frac{1-h^3-(1+2h)^3}{(1-h^3)^{\frac23}+(1-h^3)^{\frac13}(1+2h)+(1+2h)^2}$ $
$$=\frac{-6h-12h^2-9h^3}{(1-h^3)^{\frac23}+(1-h^3)^{\frac13}(1+2h)+(1+2h)^2}$$
$$\implies\lim_{h\to0^+}\frac{\sqrt[3]{1-h^3}-1-2h}h$$
$$=\frac1{\lim_{h\to0^+}(1-h^3)^{\frac23}+(1-h^3)^{\frac13}(1+2h)+(1+2h)^2}\cdot\lim_{h\to0^+}\frac{(-6h-12h^2-9h^3)}h$$
$$=\frac1{(1)^{\frac23}+(1)^{\frac13}(1)+(1)^2}(-6)$$