Intenté
$$\displaystyle \int_0^x te^{-2t}\,dt$$
Sea $u=t \implies du=dt$ Y $dv=e^{-2t}\,dt \implies v=-\dfrac{1}{2}e^{-2t}$
$$\displaystyle \int_0^x te^{-2t}\,dt=-\dfrac{1}{2}te^{-2t}\bigg|_0^x+\int_0^x \dfrac{1}{2}e^{-2t}\,dt$$ $$=-\dfrac{1}{2}xe^{-2x}-\dfrac{1}{4}e^{-2x}+\dfrac{1}{4}$$ $$\displaystyle \lim_{x\to\infty}x\left(\int_0^x te^{-2t}\,dt-\dfrac{1}{4}\right)$$ $$=\displaystyle \lim_{x\to\infty}x\left(-\dfrac{1}{2}xe^{-2x}-\dfrac{1}{4}e^{-2x}+\dfrac{1}{4}-\dfrac{1}{4}\right)$$ $$=\displaystyle \lim_{x\to\infty}-\dfrac{1}{4}xe^{-2x}(2x+1)$$ $$=\displaystyle \lim_{x\to\infty}-\dfrac{x(2x+1)}{4e^{2x}}$$ $$=\displaystyle \lim_{x\to\infty}-\dfrac{2x^2+x}{4e^{2x}}$$